
Hardware-software co-designs for
microarchitectural security

Summer Research Institute 2025 (SuRI)
EPFL – June 12, 2025

Lesly-Ann Daniel, KU Leuven

Processors are full of optimizations

2Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

3

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

4

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

5

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

6

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

- And more [1]?

Processors are full of optimizations

[1] Vicarte, Jose Rodrigo Sanchez, et al.
"Opening pandora’s box: A systematic
study of new ways microarchitecture can
leak private data." ISCA, 2021

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

7

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

- And more [1]?

Processors are full of optimizations

[1] Vicarte, Jose Rodrigo Sanchez, et al.
"Opening pandora’s box: A systematic
study of new ways microarchitecture can
leak private data." ISCA, 2021

What about security?

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

8

… Well security is not good :(

*non exhaustive list

Back to the basics

1996
2005

9

Memory accesses leak

x = tab[secret]

Data cache

10

Victim program

Attacker
Shares microarchitecture

with victim

Memory accesses leak

x = tab[secret]

Data cache

11

Victim program

Attacker
Shares microarchitecture

with victim

Prepare cache

Memory accesses leak

x = tab[secret]

Data cache

12

Victim program

Attacker
Shares microarchitecture

with victim

Victim executes

Memory accesses leak

x = tab[secret]

Data cache

13

Victim program

Attacker
Shares microarchitecture

with victim

Probe cache

slow

fast

fast

Memory accesses leak

x = tab[secret]

Data cache

14

Victim program

Attacker
Shares microarchitecture

with victim

Probe cache

slow

fast

fast

- caches
- data pre-fetchers
- load/store dependencies
- …

Control-flow leaks

secret = 1

15

if secret

then foo()

else bar()

secret = 0

- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- …

Solution? Constant-time programming!

Unsafe instructions
• Control-Flow
• Memory accesses
• Variable-time

instr.
• Full software countermeasure

• De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.

• Believed to be secure …

16

17

… Until it was broken :(

18

… Until it was broken :(

Some attacks stem from
performance-critical optimizations!

Should we just disable
optimizations?

New research opportunities!

19

Hardware-software co-design

Investigate more secure and performant defenses
against microarchitectural attacks

Proteus: An Extensible RISC-V Core for Hardware Extensions
(RISC-V Summit ’23)

Marton Bognar, Job Noorman, Frank Piessens

● In/Out-of order pipelines

● Optimizations: branch predictors, cache, prefetchers, …

● Configurable: #exec units, ROB size, …

● Extensible: plugin system

● SpinalHDL 🠞 verilog 🠞 FPGA / simulator

A modular textbook processor to study HW extensions

20

HW/SW Co-Designs for End-to-End Security

21

USENIX’23
CCS’24

ProSpeCT
Provably Secure

Speculation for the
Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman,
Sébastien Bardin, Tamara Rezk, Frank Piessens

USENIX’23
KU Leuven, Inria, CEA

Constant-time is vulnerable to Spectre

23

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Constant-time is vulnerable to Spectre

24

Predict condition true

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Constant-time is vulnerable to Spectre

25

x = mysecret

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Predict condition true

Constant-time is vulnerable to Spectre

26

x = mysecret

Leak mysecret to
microarchitecture!

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Predict condition true

How can I protect my code?

27

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?

How can I protect my code?

28

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?

Need security for CT code!

We need Secure Speculation for Constant-Time!

29

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware Secrecy Tracking

30

Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively
flow to unsafe instructions

Illustration with Spectre-v1

31

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Illustration with Spectre-v1

32

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Illustration with Spectre-v1

33

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

Illustration with Spectre-v1

34

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Illustration with Spectre-v1

35

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret
=

x not forwarded to load

How do I know that my defense works?

36

37

How do I know that my defense works?

Leakage
abstraction

Security
property

38

End-to-end security

ProSpeCT: Generic formal processor model for HST

39

Semantics of generic out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

All public values are leaked / influence predictions
→ Captures all known variants of Spectre

→ And futuristic mechanisms Load Value Prediction

Constant-time programs (ISA semantics)
do not leak secrets (microarchitectural semantics)

Security proof

Load Prediction: Rollback correct executions?

40

 char secret mysecret

1: x = load mysecret

2: y = x + 4

Load Prediction: Rollback correct executions?

41

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Load Prediction: Rollback correct executions?

42

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Resolve prediction:

- if mysecret = 0: Commit and continue to line 3
- if mysecret != 0: Rollback to line 1 That leaks!

Load Prediction: Rollback correct executions?

43

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Resolve prediction:

- if mysecret = 0: Rollback to line 1
- if mysecret != 0: Rollback to line 1

Always rollback when
actual value is secret

Implementation on Proteus and Evaluation

44

Hardware Cost:

Synthesized on FPGA

• LUTs: +17%

• Registers: +6%

• Critical path: +2%

Performance overhead [1]

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient
Data-Centric Defense Mechanism
 against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in SW for CT code
when secrets are precisely annotated

Did we get rid of Spectre?

45

- Compiler support

- Partition secret/public

- Extensive evaluation

- Extension to new optimizations

- Hardware verification

- Lightweight HW defenses?

Libra
Architectural Support for

Principled, Secure and Efficient
Balanced Execution

on High-End Processors

Hans Winderix, Marton Bognar,
Lesly-Ann Daniel, Frank Piessens

KU Leuven
CCS’24

Libra
Dream of secure balanced

executions?
Let’s make it real!

Hans Winderix, Marton Bognar,
Lesly-Ann Daniel, Frank Piessens

KU Leuven
CCS’24

State of the art software countermeasures

 [1] Molnar et al., The program counter security model: Automatic detection and removal of control-flow side channel attacks (ICISC 2005)

sub t0 s1 a0

setqz t0 t0

addi t0 t0 -1 ;tt mask

not t1 t0 ;ff mask

and t2 a1 t0

add a1 a2 a3

and a1 a1 t1

or a1 a1 t2

and t2 a2 t1

add a2 a3 a4

and a2 a3 t0

or a2 a2 t2

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

j End

End:

=

 Linearization [1] Balancing

48

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

Vuln. code

Branch balancing, are you kidding me?

“What about branch predictors or instruction caches?”
– Any side-channel expert

“We all know it’s insecure on high-end processors!”
– Any reasonable cryptographer

49

Branch balancing, are you kidding me?

“But actually why not?”
– Hopeful dreamer

50

What would it take to balance branches on modern CPUs?

Can it improve performance over linearization?

What microarchitectural features leak control-flow?

51

➔ Characterization of HW sources of control-flow leakage

Libra: Architectural support for balanced execution

➔ HW implementation & evaluation (19.3% less overhead)

Characterization

 HW sources of

control-flow leakage
Literature review

65 attack papers

29 optimizations

52

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

53

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

54

Disable optims. producing unbalanceable leakage?

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

55

Disable optims. producing unbalanceable leakage?

No! We handle unbalanceable leakage
 with new HW/SW co-design!

Libra: a new HW/SW
co-design for balancing

SW handles balanceable
leakage

HW support to address
unbalanceable leakage

efficiently

56

HW/SW Contract for
balanced execution

1. Leakage classes
○ same observation – add x1 x1 x2 ~ sub x1 x1 x2

○ dummy (no-op) instruction for each class – mv x1 x1

2. Safe/Unsafe instructions
○ Safe: timing does not depend on operands – add x1 x1 x2

○ Unsafe: timing depends on operands – load x1 (x2)

57

2-D Leakage contract for balanced executions

Software balances secret branches w.r.t. contract

58

bnz secret End

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

Software balances secret branches w.r.t. contract

59

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

1. Instruction per instruction

Software balances secret branches w.r.t. contract

60

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

1. Instruction per instruction

2. With dummy instruction in

same leakage class

Software balances secret branches w.r.t. contract

61

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software balances secret branches w.r.t. contract

62

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software balances secret branches w.r.t. contract

63

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software secure w.r.t. balanceable observervations

Software balances secret branches w.r.t. contract

64

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software secure w.r.t. balanceable observervations

… But still insecure w.r.t. unbalanceable observations

I can still see differences
in instruction cache!

Folding transformation

65

+

Key Idea: interleave secret-dependent branches

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

add a1 a1 1

add a1 a1 0

load a2 (a3)

load x0 (a3)

j End

j End

slice

Folding transformation

66

+

ISA extension to inform CPU:

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.bnz secret offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

➔ how to navigate folded region
➔ secret region so adapt behavior

Folding transformation

67

+

ISA extension to inform CPU:

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.bnz secret offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

➔ how to navigate folded region
➔ secret region so adapt behavior

Important requirement: slice-granular leakage

Hardware guarantees slice-granular leakage?

 Optimizations producing unbalanceable leakage

71

5 subcategories

guidelines to adapt for Libra

Category: instruction buffering

72

E.g. I-cache, I-prefetcher, MMU, I-TLB, etc.

instr-1a

instr-1b

instr-2a

instr-2b

instr-3a

instr-3b

Memory I-cache

Fetch
ROB

Branch PredictorI-Prefetcher

0

1

2

3

4

5

Frontend Execute

[…]

[…]
Decode

instr @1

Category: instruction buffering

73

E.g. I-cache, I-prefetcher, MMU, I-TLB, etc.

instr-1a

instr-1b

instr-2a

instr-2b

instr-3a

instr-3b

Memory I-cache

Fetch
ROB

Branch PredictorI-Prefetcher

0

1

2

3

4

5

Frontend Execute

[…]

[…]
Decode

fetch @1
instr-1b

instr-1binstr @1

Category: instruction buffering

74

E.g. I-cache, I-prefetcher, MMU, I-TLB, etc.

Guideline: slice-granular fetch

instr-1a

instr-1b

instr-2a

instr-2b

instr-3a

instr-3b

Memory I-cache

Fetch
ROB

Branch PredictorI-Prefetcher

0

1

2

3

4

5

Frontend Execute

[…]

[…]
Decode

slice @1

Category: instruction buffering

75

E.g. I-cache, I-prefetcher, MMU, I-TLB, etc.

Guideline: slice-granular fetch

instr-1a

instr-1b

instr-2a

instr-2b

instr-3a

instr-3b

Memory I-cache

Fetch
ROB

Branch PredictorI-Prefetcher

0

1

2

3

4

5

Frontend Execute

[…]

[…]
Decode

fetch @1

instr-1a

instr-1b
instr-1bslice @1slice @1

Category: pc-based mappings

76

E.g. pc-dep prefetcher, branch predictors, etc.

Branch Target Buffer

pc_2 ↦ target_2

pc_n ↦ target_n

pc_1 ↦ target_1

Category: pc-based mappings

77

E.g. pc-dep prefetcher, branch predictors, etc.

Branch Target Buffer

pc_2 ↦ target_2

pc_n ↦ target_n

pc_1 ↦ target_1

Guideline: slice-based mappings

Branch Target Buffer

slice_pc_2 ↦ slice_target_2

slice_pc_n ↦ slice_target_n

slice_pc_1 ↦ slice_target_1

Evaluation Q1. Feasibility

Q2. Security

Q3. Performance

Q4. HW cost

79

Libra implementation on Proteus

● instruction caches

● instruction prefetcher

● branch target predictor

Q1. Feasibility ✅

Sources of unbalanceable leakage.

➔ disable in folded regions

Libra-aware fetch unit

80

Security evaluation

Benchmark 11 programs [1]

● baseline

● balanced

● linearized

● libra

[1] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted hardening of embedded software against interrupt
latency side-channel attacks,” in EuroS&P, 2021.

Q2. Security ✅

RTL-level noninterference testing

- Run programs with ≠ secret

- Monitor side-channel signals

81

Execution time overhead

Q3. Performance ✅

Balanced
(insecure)

Linearized
(secure)

Libra
(secure)

Min +0% +8% -2%

Max +282% +225% +227%

Mean +42% +56% +45%

Compared to linearization

 -19.3% overhead

82

Hardware Cost (FPGA)

Q4. HW cost ✅

83

Base Libra Increase

LUT 16.5k 18.4k +11%

Registers 13.6k 14.9k +9.5%

Critical path 37.4ns 37.4ns +0%

Small area increase

No impact on CP

A new era for balancing?

84

Well, there are still challenges!

● HW verif/synthesis for balancing contracts

● Automatic balancing transformation

● Evaluation on larger benchmarks

● Feasibility with more complex optimizations?

Exploring HW-SW
Co-Designs

Let’s take a dive

85

Rigorous formalization and security proofs

Implementations Proteus RISC-V core

Experimental evaluation

A common methodology

86

HW/SW co-designs can be effective and efficient
solutions against side-channel attacks

Many remaining challenges!

87

● New defenses: new processors optims, emerging applications, platforms, etc.

● Compiler support:

○ needed for adoption and better evaluation

○ parametric in leakage contract

● Hardware verification: support defenses and scale existing techniques

● Comparison of existing defenses on the same baseline

Ecosystem to implement, evaluate, and compare security defenses?

