Hardware-software co-designs for
microarchitectural security

Summer Research Institute 2025 (SuRl)
EPFL —June 12, 2025

Lesly-Ann Daniel, KU Leuven

fwo = DistriN=t

Processors are full of optimizations

Powu‘cﬂ‘g Stripe

\
Fi 1 5'MB

Ring Agen(L3$/
L3S Tags LLC

L2$[Control [!
b k]
‘fi : . Ring Agent§ 1.5/MB |
i ok - 1 8 e) |
e \ P sl ' t
{FMA EUs | o H ¥ ; X L3$ Tags L3%/

| onPort 0 & 1 i

Ring Agent
-

L3S Tags, |

W
=
m\
H
N
|
>~

W

(adv9-x8t)

o

m - www.comptoir-hardwa

.com/Locuza_

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

B e L]
Poweryd G a t
.ﬂw-d&—!lu‘ﬂ_

Out- 01 Order ‘"
Scheduling & S48
& o P

Retiremen
ALA-ALULL

"» (wnth hwg}
AVXJlZ n.uppor()

Processors are full of optimizations

PoweriGate:Stripe
Branch Predld ' * "§
|

1.5'MB

us Branch Buffer,t Clk

y

Ring Agent §

|

512/KB |
‘| Data ‘ v . [L3$ Tags

L3s$/
LLC

! 51

2'MB L25/MLC

Ring Agent §
+
L3s$:Tags

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

- e : Powera(ISat?Strup ,. PR gL e — =
- Caches B —0) e

Power/Gate:Stripe
Out-of-Order ‘"

Scheduling = et B Branch Predldo l | R =4

3

|
llS} Branch Buf‘fer,z, Clk 1-5MB !_“_y—\- 1.5 MB

v : L3$/ Ring :\gent}l‘ L3$/
P Pozea | 1] [osea | & JLEC A [L3s Tags| § LLC

- x
2 'MB Lzs/MLC
+ L2$ Control
S Ly

B (with hwf'} 24X Lle
Avx.,12wpp°ﬂ) Control ')

1°.5'MB Ring Agent

4 a8 ke \:
fLiosi

. LY &

Data

£ Vil E:
] 512 KB L3$/ L3S Tags

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

T e ht
T p-r.ymm

o PoweraGat
B Cac €S 7 0:31 o';:'r'-"-’ Lo Mo B -
ut-of- N 3 -
{ Scheduling =38 ' i R LRy, Branch Predldor.{
& £ i '

“ stirement gl 410 . i (TN ranch|Bu er, l

- Out-of-order o e o .;;L.IS.A,B B,ﬁ,’rj

speculative
execution

L2/MBL2s/MLC
‘.(k L2s$ Control

\.(wnth hwg}

L A LIDS
AVXJlZ !-uppor()lg

. Control i}

: i . 3 - N

IFMA EUs | E;

| on Portl0 &'1

e
m’“’“‘m“"‘"‘%‘i’wencatelsm

L —

Powcr;Galfc Stripe
4
1.5'MB

L3s$/
LLC

Ring Agent §
+ [

IL3§ Tags i

Ring Agent §
+
L3s$:Tags

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

. - v, : :,:’T:‘l e m— ! . M‘A,M O PowerlGate S'tr‘ipc
- Caches e E R e i L —
Schedulmg 2 ' : LR i ‘hred ‘ . 3 » "
& I s : Ao s NS L e
1.5'MB
- QOut-of-order stk B
ing Agent §

. . L3%/
speculative L35 Tags [LLC
execution o TMB L2s /MU

1 1y Al ‘.:+ L2% C9ntrol . |
i with hwg} IPRINT. : i1 [TT7 RAE | . Ring Agent I
- And more [1]? A.VX.:llZ s?pp'or)ié 25 o f i :‘ 7. L3s;a |
N1 L gs
{FMA EUs | 5 . It o ‘
| on Port0 &'1 o7 : 3
| —
" mm—gﬁlelk ate r
[1] Vicarte, Jose Rodrigo Sanchez, et al. I IS —CN T D

"Opening pandora’s box: A systematic _ , , , ,
. . Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/
study of new ways microarchitecture can

leak private data." ISCA, 2021

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

e /]
| yow ems p-mm
- - Power Ga
m r

et ;.A_Mh.‘

execution Hak @B TR SO MY
FPU ' N&e el , g ;., + L2$ Control
l‘;‘i(w'th Lw |i%1NT § ngs‘ ? “" 3 | ¥ l g{
- And more [1]? AVX.:12 v.'-ppo?)l‘ Exec COM'ol 5. R | . :
c_ - . - vl 'A e 3

[1] Vicarte, Jose Rodrigo Sanchez, et al.
"Opening pandora’s box: A systematic
study of new ways microarchitecture can
leak private data." ISCA, 2021

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

... Well security is not good :(

NN BUS'NESS Markets Tech Medla Success Video

Major chip flaws affect billions of devices
by Selena Larson @CNNTech

(© January 4, 2018: 9:44 AMET ° ° (Y J

Home News Sport Business Innovation Culture Arts Travel Earth Audio Video Live

'Foreshadow' attack affects Intel chips

15 August 2018 Share <5 Save []

Dave Lee
North America technology reporter

Spectre flaws continue to haunt Intel and AMD
as researchers find fresh attack method

The indirect branch predictor barrier is less of a barrier than hoped

A Thomas Claburn Fri 18 Oct 2024 14:.01 UTC

*non exhaustive list

Back to the basics

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems Cache-timing attacks on AES

Paul C. Kocher Daniel J. Bernstein *

Cryptography Research, Inc. . o)
607 Market Street, 5th Floor, San Francisco, CA 94105, USA. Department of Mathematics, Statistics, and Computer Science (M/C 249)
E-mail: paul@cryptography . com. The University of Illinois at Chicago
Chicago, IL 60607-7045

. .) djb@cr.yp.to
Abstract. By carefully measuring the amount of time required to per-

form private key operations, attackers may be able to find fixed Diffie-
Hellman exponents, factor RSA keys, and break other cryptosystems.

Against a vulnerable system, the attack is computationally inexpensive Abstract. This paper demonstrates complete AES key recovery from
and often requires only known ciphertext. Actual systems are potentially known-plaintext timings of a network server on another computer. This
at risk, including cryptographic tokens, network-based cryptosystems, attack should be blamed on the AES design, not on the particular AES

and other applications where attackers can make reasonably accurate : :
timing measurements. Techniques for preventing the attack for RSA and library used by the server; it is extremely difficult to write constant-time

Diffie-Hellman are presented. Some cryptosystems will need to be re- high-speed AES software for common general-purpose computers. This

vised to protect against the attack, and new protocols and algorithms paper discusses several of the obstacles in detail.
may need to incorporate measures to prevent timing attacks.

1996 9

Memory accesses leak

Victim program

X = tab[secret]

Data cache

{u]

(L&)

Attacker
Shares microarchitecture
with victim

10

Memory accesses leak

Victim program

X = tab[secret]

Data cache

{u]

Prepare cache

(L&)

Attacker
Shares microarchitecture
with victim

11

Memory accesses leak

Victim program

X = tab[secret]

Data cache

Victim executes

L&)

Attacker
Shares microarchitecture
with victim

12

Memory accesses leak

Victim program

X = tab[secret]

Data cache

Probe cache

slow

fast
fast

L&)

Attacker
Shares microarchitecture
with victim

13

Memory accesses leak

Victim program

X = tab[secret]

Data cache

Probe cache

slow

fast
fast

- caches
- data pre-fetchers
- load/store dependencies

L&)

Attacker
Shares microarchitecture
with victim

14

C

ontrol-flow leaks

if secret

then foo() | = ﬁ
else bar() | — ﬁ

- end-to-end timing

- different resource consumption
- branch predictor state

- instruction cache

- instruction prefetcher

- micro-op cache

15

Solution? Constant-time programming!

Unsafe instructions

e Control-Flow

* Memory accesses

* \Variable-time
instr.

* Full software countermeasure

* De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.

e Believed to be secure ...

16

... Until it was broken :(

NN BUS'NESS Markets Tech Medla Success Video

Major chip flaws affect billions of devices
by Selena Larson @CNNTech

(© January 4, 2018: 9:44 AM ET ° ° | Y J

Home News Sport Business Innovation Culture Arts Travel Earth Audio Video Live

'Foreshadow' attack affects Intel chips

15 August 2018 Share <% Save []

Dave Lee
North America technology reporter

Spectre flaws continue to haunt Intel and AMD
as researchers find fresh attack method

The indirect branch predictor barrier is less of a barrier than hoped

A Thomas Claburn Fri 18 Oct 2024 14:.01 UTC

GoFetch

17

... Until it was broken :(

Some attacks stem from
performance-critical optimizations!

Should we just disable

optimizations?

GoFetch

18

New research opportunities!

m D

= N

Hardware-software co-design

Investigate more secure and performant defenses
against microarchitectural attacks

< g s > !

RISC

19

Proteus: An Extensible RISC-V Core for Hardware Extensions
(RISC-V Summit "23)

Marton Bognar, Job Noorman, Frank Piessens

A modular textbook processor to study HW extensions
In/Out-of order pipelines

Optimizations: branch predictors, cache, prefetchers, ...
Configurable: #exec units, ROB size, ...

Extensible: plugin system

SpinalHDL [verilog [1 FPGA / simulator |
R
RNSC .

HW/SW Co-Designs for End-to-End Security

PROSPECT: Provably Secure Speculation for the Constant-Time Policy

Lesly-Ann Daniel!, Marton Bognarl, Job Noorman', Sébastien Bardinz, Tamara Rezk® and Frank Piessens

limec-DistriNet, KU L
2CEA, List, Univ
3INRIA, Université Cote

Abstract

We propose PROSPECT, a generic formal processor mod
providing provably secure speculation for the constant-tin
policy. For constant-time programs under a non-speculati
semantics, PROSPECT guarantees that speculative and out-¢
order execution cause no microarchitectural leaks. This gui
antee is achieved by tracking secrets in the processor pipelil
and ensuring that they do not influence the microarchitectur
state during speculative execution. Our formalization cove
chanisms, generalizing pri
roof covers all known Spect
jection (LVI) attacks.

Libra: Architectural Support For Principled, Secure And Efficient
Balanced Execution On High-End Processors

Hans Winderix
frank.piessens@kuleuven.be
DistriNet, KU Leuven
Leuven, Belgium

Lesly-Ann Daniel
frank.piessens@kuleuven.be
DistriNet, KU Leuven
Leuven, Belgium

ABSTRACT

Control-flow leakage (CFL) attacks enable an attacker to expose
control ﬂow demsmns of a v1ct1m program via side-channel obser-
an amalizaination) of secret-dependent control

) \gainst these attacks, yet it comes

CCS 24 ely, balancing secret-dependent
verhead, but is notoriously inse-

Marton Bognar
frank.piessens@kuleuven.be
DistriNet, KU Leuven
Leuven, Belgium

Frank Piessens
frank.piessens@kuleuven.be
DistriNet, KU Leuven
Leuven, Belgium

KEYWORDS

Microarchitectural Side-Channels, Control-Flow Leakage, HW/SW
Leakage Contracts, HW/SW Codesign, Secure Compilation, Control-
Flow Balancing

ACM Reference Format:
Hans Winderix, Marton Bognar, Lesly-Ann Daniel, and Frank Piessens.
2018. Libra: Architectural Support For Principled, Secure And Efficient Bal-

21

ProSpeCT

Provably Secure
Speculation for the
Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman,
Sébastien Bardin, Tamara Rezk, Frank Piessens

KU Leuven, Inria, CEA

Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

1f (idx < len)
X = array[idx] ‘?
load (x)

23

Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

if (idx < len) &
X = array[idx]
load (x)

Consider idx = len

— Predict condition true !

24

Constant-time is vulnerable to Spectre

char arrayllen]

h et o e,
char mysecr — Predict condition true !
1f (1idx < len) .

4— X = mysecret

X = array[idx]
load (x)

Consider idx = len

Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

if (idx < len) &

X = array[idx]

4— X = mysecret

load (x)

Leak mysecret to
microarchitecture!

Consider idx = len

— Predict condition true !

26

How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Cauligi’ Craig Disselkoen’ Klaus v. Gleissenthall’
Dean Tullsen’ Deian Stefan” Tamara Rezk* Gilles Barthe**

TUC San Diego, USA *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

PROTECT AGAINST SPECTRE?

Speculative constant-time
e Hard to reason about

* New speculation mechanisms?

O

\ =
NOUGH2

27

How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Cauligi’ Craig Disselkoen’ Klaus v. Gleissenthall’
Dean Tullsen” Deian Stefan Tamara Rezk* Gilles Barthe**
i R R P A *TNTD T A

Need security for CT code!

e Hard to reason about

* New speculation mechanisms?

28

We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
€ Hardware shall not speculatively leak secrets

_‘jﬂ But still be efficient and enable speculation

29

Hardware Secrecy Tracking

Software side Hardware side
e Label secrets —) ° Track security labels
e Constant-time program » Secrets do not speculatively
flow to unsafe instructions
ConTEXT: A Generic Approach for Mitigating .) .
Spectre SpectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
Michaet Sehvar' hﬁ%ﬁ%ﬁﬁ?ﬂ?ﬁ:ﬂzgﬁ, Speculatlve Prlvacy Trackmg (SPT): Leaklilglir]:f(;nrnmatlon From 53{,:1‘15 iﬁil;i};;s Unﬂﬁfggﬁ{;‘fﬂsas
Speculative Execution Without Compromising Privacy
Rutvik Choudhary Jiyong Yu
Christopher W. Fletcher Adam Morrison

UIUC, USA Tel Aviv University, Israel 3 0

lllustration with Spectre-vl

char arrayl[len]
secret char mysecret
if (idx < len)

X = array[1dx]
3: load (x)

Consider idx = len

31

lllustration with Spectre-vl

char arrayl[len]
secret char mysecret -~
if (idx < len)
X = array[1dx]
3: load (x)

/ Developer marks secrets

Consider idx = len

32

lllustration with Spectre-vl

char arrayllen]

secret char mysecret -~

/ Developer marks secrets

— Speculative execution !

if (idx < len) ==
X = array[1dx]
3: load (x)

Consider idx = len

33

lllustration with Spectre-vl

char arrayllen]

secret char mysecret -~

/ Developer marks secrets

if (idx < len) -=—

X = array[idx] =
3: load (x)

X

Consider idx = len

— Speculative execution !

mysecret:secret

34

lllustration with Spectre-vl

char array[len] / Developer marks secrets
secret char:mysecnet“

. . — Speculative execution !
1f (idx < len) =

X = array[i1dx] = X = mysecret:secret
3: load (x)
\ Speculative execution + secret
Consider idx = len =

x not forwarded to 1o0ad

35

How do | know that my defense works?

YOUBUILTIA
HARDWARE IIEFENSE?

THAT'S CUTE...

36

How do | know that my defense works?

- S Sty
FENSE?
{il ; !’lr‘.i i

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Képr , Jan Reineke?, and Pepe Vila*
*IMDEA Software Institute TMicrosoft Research tSaarland University

THAT'S CUTE...

37

(

&

\
Hardware-Software Contracts for
Secure Speculation
Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute TMicrosoft Research *Saarland University)

X

property —1| abstraction

- _g?——»

<

End-to-end security

38

ProSpeCT: Generic formal processor model for HST

Semantics of generic out-of-order speculative processor with HST
— Abstract microarchitectural context

— Functions update, predict, next
All public values are leaked / influence predictions
— Captures all known variants of Spectre %}
Q
— And futuristic mechanisms Load Value Prediction T

Security proof

L—ﬁ Constant-time programs (ISA semantics)
@ do not leak secrets (microarchitectural semantics)

39

Load Prediction: Rollback correct executions?

char secret mysecret
x = load mysecret

y = x + 4

40

Load Prediction: Rollback correct executions?

char secret mysecret

x = load mysecret Predict x=0 !
y = X + 4 <

Compute y =4

Load Prediction: Rollback correct executions?

char secret mysecret

X = load mysecret

y = X + 4 <

Resolve prediction:

if mysecret=0: Commitand continue to line 3
if mysecret |=0: Rollbacktolinel

Predict x =0 2

Compute y =4

That leaks!

42

Load Prediction: Rollback correct executions?

char secret mysecret

x = load mysecret

y = X + 4 <

Resolve prediction:

if mysecret =0: Rollbacktolinel
if mysecret |=0: Rollbacktolinel

Predict x=0 !

Compute y =4

Always rollback when

actual value is secret

43

Implementation on Proteus and Evaluation

Performance overhead [1]

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%
Conservative (All) 10% 25% 36% 45%

No overhead in SW for CT code
when secrets are precisely annotated

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient
Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

Hardware Cost:
Synthesized on FPGA
e LUTs: +17%

* Registers: +6%

* Critical path: +2%

44

Did we get rid of Spectre?

Compiler support

VY
-
5

s
2 ({?ﬁﬁﬁg’mjc
STV
TS T3

%5

2, s e

- Partition secret/public

BN TP

- Extensive evaluation
Extension to new optimizations
Hardware verification

Lightweight HW defenses?

45

Libra

Architectural Support for
Principled, Secure and Efficient

Balanced Execution
on High-End Processors

Hans Winderix, Marton Bognar,
Lesly-Ann Daniel, Frank Piessens

KU Leuven

CCS’24

Libra

Dream of secure balanced
executions?
Let’s make it real!

Hans Winderix, Marton Bognar,
Lesly-Ann Daniel, Frank Piessens

KU Leuven

CCS’24

State of the art software countermeasures

beq s1 20 Target
add al a2 a3
j End
Target:
add a2 a3 a4
End:

Linearization [1]

sub t0 s1 ao
setgqz to to

not t1 10

and t2 al to
add al a2 a3
and al al 1
or al al t2
and ~ a2 1
add a2 a3 a4
and a2 a3 ©
or a2 a2 t2

addi to to -1 ;tt mask

;Ff mask

Balancing

beq 1 a0 Target
add al a2 a3
j End

Target:
add a2 a3 a4
j End

End:

&
o

[1] Molnar et al., The program counter security model: Automatic detection and removal of control-flow side channel attacks (ICISC 2005) 48

Branch balancing, are you kidding me?

“What about branch predictors or instruction caches?”
— Any side-channel expert

@ “We all know it’s insecure on high-end processors!”
— Any reasonable cryptographer
@ Antoon Purnal
v @PurnalToon

Supreme Court votes 6-3 in favor of branching on
secrets in cryptographic code

8:01 p.m. - 30 jun. 2022

49

Branch balancing, are you kidding me?

d “But actually why not?”

— Hopeful dreamer

50

What would it take to balance branches on modern CPUs?

L

@ Libra: Architectural support for balanced execution

What microarchitectural features leak control-flow?
=> Characterization of HW sources of control-flow leakage

Can it improve performance over linearization?
= HW implementation & evaluation (19.3% less overhead)

5

51

Characterization
HW sources of
control-flow leakage

®

Literature review

65 attack papers

29 optimizations

52

Balanceable leakage Unbalanceable leakage

Independent of pc Dependent of pc
e instruction latency e instruction cache
e data cache e instruction TLB
e data TLB e instruction prefetcher
e |oads/store buffer dep. e branch predictors
e data dependencies e |-Op caches
o ... [)
= canbe handled in SW & -> cannot be handled in SW %)

=> but notin a principled way (=X

Balanceable leakage Unbalanceable leakage
Independent of pc Dependent of pc

Disable optims. producing unbalanceable leakage?

e data dependencies e p-op caches
e ... [)
= can be handled in SW & -> cannot be handled in SW &

—> but not in a principled way %
54

Balanceable leakage Unbalanceable leakage

Independent of pc Dependent of pc

Disable optims. producing unbalanceable leakage?

No! We handle unbalanceable leakage
with new HW/SW co-design!

=> but notin a principled way (X

Libra: a new HW/SW

. . SW handles balanceable
co-design for balancing

leakage

HW/SW Contract for

Al
.C
‘ balanced execution
HW support to address
unbalanceable leakage
efficiently

g@ 2-D Leakage contract for balanced executions

1. Leakage classes
O same observation—add x1 x1 x2~sub x1 x1 x2
o dummy (no-op) instruction for each class—mv x1 x1

2. Safe/Unsafe instructions
o Safe: timing does not depend on operands —add x1 x1 x2
o Unsafe: timing depends on operands —load x1 (x2)

57

.C \ Software balances secret branches w.r.t. contract

bnz secret End

/

addi al a1 1
load a2 (a3)
j End

~

End: [...]

58

.C \ Software balances secret branches w.r.t. contract

bnz secret Target

N

addi a1l a1 1

~

load a2 (a3)

j End

~

~

~

e

End: [..

.]

1.

Instruction per instruction

59

.C \ Software balances secret branches w.r.t. contract

bnz Target . . .
/ \ 1. Instruction per instruction
addi a1 a1 1 [~| addi a1l a1 o 2. With dummy instruction in
load a2 (a3) [~ same leakage class
j End ~

~ 7

End: [...]

60

.C \ Software balances secret branches w.r.t. contract

bnz

Target

N

addi a1l a1 1

addi al al ©

load a2 (a3)

load x0 (a3)

j End

~

e

End:

[..

.]

Instruction per instruction

With dummy instruction in
same leakage class

Balance operands of unsafe
instructions

61

.C \ Software balances secret branches w.r.t. contract

bnz

Target

N

addi al a1 1
load a2 (a3)
j End

addi 21 a1l o
load x0 (a3)
j End

~

e

End:

[..

.]

Instruction per instruction
With dummy instruction in
same leakage class

Balance operands of unsafe
instructions

62

.C \ Software balances secret branches w.r.t. contract

Software secure w.r.t. balanceable observervations

addi a1l a1 1 |~ | addi a1 al @ 2. With dummy instruction in
load a2 (a3) ~ | load x0 (a3)
Jj End ~ | § End

\ / 3. Balance operands of unsafe

End: [...] instructions

same leakage class

63

AN
Software balances secret branches w.r.t. contract

Software secure w.r.t. balanceable observervations

... But still insecure w.r.t. unbalanceable observations

| can still see differences
in instruction cache!

bnz Target
addi al a1 1
load a2 (a3)
J

Target:
addi a1 al o
load x0 (a3)

J
End:

EI + ﬁ Folding transformation

Key ldea: interleave secret-dependent branches

add al a1 1
add a1l al o

load a2 (a3)
load x0 (a3)

J
J

slice

65

EI + ﬁ Folding transformation

ISA extension to inform CPU:

bnz

addi al al 1
load a2 (a3)

J

addi al al o
load x0 (a3)

J

=> how to navigate folded region

secret region so adapt behavior

lo.bnz 2
add a1 al 1 ;pc+2
add 21 al @ spc+2
load a2 (a3) ;pc+2
load x0 (a3) ;pc+2
lo.beq x0 1
lo.beq x© 1

66

EI + ﬁ Folding transformation

)] ~ > how to navigate folded region
ISA extension to inform CPU: => secret region so adapt behavior

bnz Target
U - C(= = .:' o .v v:.
addi al al o ioa SRCON B spC+
load x9 (a3) o.beq x0 offT:0 offF:0 #bb:1
: lo.beq x0 offT:0 offF:0@ #bb:1
J End
End:

67

ﬁ Hardware guarantees slice-granular leakage?

o Optimizations producing unbalanceable leakage

5 subcategories

|—> guidelines to adapt for Libra

71

vuu A W N RO

ﬁ Category: instruction buffering

Memory

instr-1a
instr-1b

instr-2a
instr-2b

instr-3a
instr-3b

I-cache, |-prefetcher, MMU, I-TLB, etc.

I-cache

|

Frontend Execute

ROB

Fetch

— Decode [—>

instr @1

|-Prefetcher

|

Branch Predictor

72

vuu A W N RO

ﬁ Category: instruction buffering

Memory

I-cache, |-prefetcher, MMU, I-TLB, etc.

Frontend Execute
ROB
Fetch
— Decode [—™
instr @1 instr-1b <—>[

I-cache
instr-1a
instr*—1b< :t -
- instr-1b (e
instr-2a je—»
instr-2b
- N
instr-3a
instr-3b

I-Prefetcherd
~

|

Branch Predictor

73

vuu A W N RO

ﬁ Category: instruction buffering

Memory

I-cache, |-prefetcher, MMU, I-TLB, etc.

Guideline: slice-granular fetch

I-cache

instr-1a
instr-1b

instr-2a
instr-2b

instr-3a
instr-3b

|

Frontend Execute

ROB

Fetch

— Decode [—>

slice @1

|-Prefetcher

|

Branch Predictor

74

vuu A W N RO

ﬁ Category: instruction buffering

I-cache, |-prefetcher, MMU, I-TLB, etc.

Guideline: slice-granular fetch

Frontend Execute
ROB
Fetch
— Decode [—™
slice @1 instr-1b <—>[

Memory I-cache
instr-1a ~ v
instr-1b %ns =2

- instr-1b (e
instr-2a je—»

instr-2b

- N
instr-3a

instr-3b

I-Prefetcherd
~

|

Branch Predictor

75

ﬁ Category: pc-based mappings

pc-dep prefetcher, branch predictors, etc.

Branch Target Buffer

pc_1l — target 1

pc_2 = target 2

pc_n — target n Q

76

ﬁ Category: pc-based mappings

pc-dep prefetcher, branch predictors, etc.

Guideline: slice-based mappings

Branch Target Buffer Branch Target Buffer

pc_1 = target 1 slice_pc_1 = slice_target 1

pc_2 ~ target 2 q slice_pc_2 ~ slice_target 2

pc_n — target n Q slice_pc_n ~ slice_target Q

Evaluation

Q1. Feasibility
Q2. Security
Q3. Performance

Q4. HW cost

79

Libra implementation on Proteus

Sources of unbalanceable leakage.

® instruction caches . :
} Libra-aware fetch unit

® instruction prefetcher
e branch target predictor =2 disable in folded regions

Q1. Feasibility

. RISC

80

Security evaluation

Benchmark 11 programs [1] RTL-level noninterference testing
® baseline - Run programs with # secret
e balanced - Monitor side-channel signals

® linearized

Q2. Security

e libra

[1] H. Winderix, J. T. Miihlberg, and F. Piessens, “Compiler-assisted hardening of embedded software against interrupt
latency side-channel attacks,” in EuroS&P, 2021.
81

Execution time overhead

Balanced Linearized Libra

(insecure) (secure) (secure)
Min +0% +8% -2%
Max +282% +225% +227%
Mean +42% +56% +45%

Compared to linearization
-19.3% overhead

Q3. Performance |4

82

Hardware Cost (FPGA)

Base Libra Increase
LUT 16.5k 18.4k +11%
Registers 13.6k 14.9k +9.5%
Critical path 37.4ns 37.4ns +0%

Q4. HW cost

Small area increase
No impact on CP

83

A new era for balancing?

Well, there are still challenges!

e HW verif/synthesis for balancing contracts
e Automatic balancing transformation
e Evaluation on larger benchmarks

e Feasibility with more complex optimizations?

84

Exploring HW-SW
Co-Designs

Let’s take a dive

A common methodology

Q Rigorous formalization and security proofs

Implementations Proteus RISC-V core

Experimental evaluation

”

HW/SW co-designs can be effective and efficient
solutions against side-channel attacks

86

Many remaining challenges! %":&@L
" &

® New defenses: new processors optims, emerging applications, platforms, etc.
e Compiler support:

o needed for adoption and better evaluation

o parametric in leakage contract
e Hardware verification: support defenses and scale existing techniques

e Comparison of existing defenses on the same baseline

Ecosystem to implement, evaluate, and compare security defenses?

)

87

