
DefMal Webinar
October 21st, 2025

Lesly-Ann Daniel, EURECOM

Microarchitectural Attacks and
Provable Defenses

Processors are full of optimizations

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

Processors are full of optimizations

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

- And more [1]?

Processors are full of optimizations

[1] Vicarte, Jose Rodrigo Sanchez, et al.
"Opening pandora’s box: A systematic
study of new ways microarchitecture can
leak private data." ISCA, 2021

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Intel Meteor Lake – Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

- Caches

- Out-of-order
speculative
execution

- And more [1]?

Processors are full of optimizations

[1] Vicarte, Jose Rodrigo Sanchez, et al.
"Opening pandora’s box: A systematic
study of new ways microarchitecture can
leak private data." ISCA, 2021

What about security?

https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

… Well security is not good :(

*non exhaustive list

Back to the basics

1996
2005

Control-flow leaks

secret = 1

if secret

then foo()

else bar()

secret = 0

- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- …

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=????

Concrete example

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=????

Concrete example

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4???

Concrete example

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=43??

Concrete example

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4321

Concrete example

Concrete example

Solution
Make timing independent of secret
Remove secret-dependent branch!

bool check_pin(char* guess) {
 good = true;
 for (i=0; i<4; i++)
 good &= guess[i] == pin[i];
 return good;
}

Memory accesses leak

x = tab[secret]

Data cache

Victim program

Attacker
Shares microarchitecture

with victim

Memory accesses leak

x = tab[secret]

Data cache

Victim program

Attacker
Shares microarchitecture

with victim

Prepare cache

Memory accesses leak

x = tab[secret]

Data cache

Victim program

Attacker
Shares microarchitecture

with victim

Victim executes

Memory accesses leak

x = tab[secret]

Data cache

Victim program

Attacker
Shares microarchitecture

with victim

Probe cache

slow

fast

fast

Memory accesses leak

x = tab[secret]

Data cache

Victim program

Attacker
Shares microarchitecture

with victim

Probe cache

slow

fast

fast

- caches
- data pre-fetchers
- load/store dependencies
- …

Solution? Constant-time programming!

Unsafe instructions
• Control-Flow
• Memory accesses
• Variable-time

instr.
• Full software countermeasure

• De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.

• (Almost) Secure against micro-architectural attacks (hum…)

Constant-time is not easy to implement

clang-3.0 –O0

Compilers can break constant-time!

clang-3.0 –O3

What can we do about it?

Constant-time preserving compilers

Domain specific languages & compilers for crypto

What can we do about it?

Constant-time preserving compilers

Domain specific languages & compilers for crypto
Fight the compiler

And verify binary code

Binary-Level
Symbolic Execution
for Constant-Time

https://github.com/binsec/rel

https://github.com/binsec/rel

Constant-Time (a bit more) Formally

2 executions that only differ in their secret input
must be indistinguishable to an observer

29

Observation’ (pc + mem)

Observation (pc + mem)Public, Secret

Public, Secret’

Constant-Time (a bit more) Formally

2 executions that only differ in their secret input
must be indistinguishable to an observer

30

Observation’ (pc + mem)

Observation (pc + mem)Public, Secret

Public, Secret’

Property relating two execution traces [1]

[1] Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security

Several approaches [1]

Static
● Type systems

● Abstract interpretation

● Symbolic execution

Dynamic
● Record and compare observations

● Statistical tests

● Fuzzing

● Dynamic symbolic execution

[1] Geimer, Antoine, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel, Sébastien Bardin, and Clémentine Maurice. "A
systematic evaluation of automated tools for side-channel vulnerabilities detection in cryptographic libraries." In ACM CCS 2023.

Background: Symbolic Execution

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

Can error be reached?

Background: Symbolic Execution

Symbolic store

p ↦ p₀
s ↦ s₀
pc ↦ 0x0080

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

Background: Symbolic Execution

Symbolic store0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

p ↦ p₀
s ↦ s₀
t ↦ p₀ ✕ s₀
pc ↦ 0x0084

Background: Symbolic Execution

Symbolic store0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

p ↦ p₀
s ↦ s₀
t ↦ p₀ ✕ s₀ - 48
pc ↦ 0x0088

Background: Symbolic Execution

error

Symbolic store

Path constraint

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

p ↦ p₀
s ↦ s₀
t ↦ p₀ ✕ s₀ - 48
pc ↦ error

0x008c

0x0088

t₀ ≠ 0t₀ = 0

t₀ = 0

t₀ = p₀ ✕ s₀ - 48

Background: Symbolic Execution

error

Symbolic store

Path constraint

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

p ↦ p₀
s ↦ s₀
t ↦ p₀ ✕ s₀ - 48
pc ↦ error

0x008c

0x0088

t₀ ≠ 0t₀ = 0

t₀ = 0

t₀ = p₀ ✕ s₀ - 48

p₀ = 6

s₀ = -8

=> Query SMT-Solver

Can error be reached?

t₀ = p₀ ✕ s₀ - 48
∧ t₀ = 0 is SAT?

Safety vs. 2-Hypersafety

2 executions that only differ in their secret input
must be indistinguishable to an observer

38

Observation’ (pc + mem)

Observation (pc + mem)Public, Secret

Public, Secret’

Property relating two execution traces

Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program P;P’

Can re-use verification techniques/tools for safety!

Symbolic Execution for CT

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

Is program CT?
= Can branch differ in 2 executions?

(1) SE

t₀ = p₀ ✕ s₀ - 48

Symbolic Execution for CT

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

Is program CT?
= Can branch differ in 2 executions?

(2) Self-composition

= public Models 2 executions Can branch differ?

(1) SE

t₀ = p₀ ✕ s₀ - 48 ∧ ∧
t₀ = p₀ ✕ s₀ - 48

t’₀ = p’₀ ✕ s’₀ - 48
p₀ = p’₀ t₀ ≠ t’₀

Symbolic Execution for CT

0x0080: mul t, p, s

0x0084: add t, t, 48

0x0088: beqz t error

0x008c: div t, s, t

0x0090: [...]

Is program CT?
= Can branch differ in 2 executions?

(2) Self-composition

= public Models 2 executions Can branch differ?

(1) SE

t₀ = p₀ ✕ s₀ - 48
t₀ = p₀ ✕ s₀ - 48

t’₀ = p’₀ ✕ s’₀ - 48
p₀ = p’₀ ∧ ∧ t₀ ≠ t’₀

(3) Solver?

p’₀ = 6

s’₀ = -8

p₀ = 6

s₀ = 0

Beyond Self-Composition: Optimization for SE

• 2 execution in 1 SE instance
• Maximize sharing
• Spare queries

• RelSE for CT
• Optimization for binary-level

And concretely?

X86-32 / 64
RISC-V 32
ARMv7/AARCH64/AMD64

Binary
SMT-Solver

SE/RelSE

Loader for ELF/PE
Build & simplify formulas
[…]

IR
Analysis

Helpers

Boolector
Bitwuzla
z3, cvc4, yices

https://binsec.github.io/

Configuration
Concretize esp, .data,
canaries, …
Libc stubs

?

CT-analysis of cryptographic primitives

https://binsec.github.io/

‘

11 compiler versions
○ 5 versions of clang for x86
○ 5 versions of gcc for x86
○ 1 version of gcc for ARM

Preservation of constant-time by compilers

Optimization setups
• Optimization level O1 … O3
• Individual optimizations

• X86-cmov-converter, if-conversion

Programs
• Analyze 34 small programs
• Total: 4148 binaries

Compile
&

Analyze with Binsec/Rel

https://github.com/binsec/rel_bench/tree/main/properties_vs_compilers/ct

Source

Binary

Backend passes can still
introduce violations!

LLVM-IR

LLVM ≠ Binary

Clang adds secret dependent memory access

LLVM-IR
clang-9 –m32 –O3 –march=i686

- Eval of NIST PQDSS implems: 302 instances of 15 primitives
- Analysis with Binsec/Rel, TIMECOP, RTLF, dudect
- 26 issues reported (22 by Binsec/Rel)
- 5 critical vulnerabilities fixed

Verification of NIST PQC Candidates

● Constant-Time = de facto standard against microarchitectural SCA

● We can formalize CT as a 2-hypersafety

● There are tools to verify crypto primitives & find bugs

● We can find cool bugs introduced by compilers

LLVM analysis is not sufficient!

Summary

But constant-time is not enough!

Constant-time is vulnerable to Spectre

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Constant-time is vulnerable to Spectre

Predict condition true

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Constant-time is vulnerable to Spectre

x = mysecret

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Predict condition true

Constant-time is vulnerable to Spectre

x = mysecret

Leak mysecret to
microarchitecture!

Consider idx = len

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Predict condition true

Mitigate Spectre

Mitigate Spectre
How to fix existing software?

Fences to block speculative execution

 char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: fence

4: load(x)

• Branch is mispredicted to true

• fence stalls until branch is resolved

• Rollback before leak(mysecret)

Speculative Constant-Time (SCT)

Idea: Security in the constant-time observation mode
on a speculative semantics

Many flavors of microarchitectural semantics / ways to define security (see [1])

[1] Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., & Stefan, D. (2022, May). SoK: Practical foundations for
software Spectre defenses. SP’22

Goals. Find suitable abstraction to reason about Spectre
• Capture all variants of Spectre
• Keep it simple

Why is that hard?

Challenge. Microarchitectural features are complex, often undocumented

Problem. Microarchitectural semantics with predictions and
out-of-order execution

Modelling speculative semantics

Modelling speculative semantics

We need to be smarter than that

Binary-Level
Symbolic Execution

for Spectre

https://github.com/binsec/haunted

https://github.com/binsec/haunted

RelSE for architectural semantics

64

if c

then foo

else bar c

foo bar

RelSE for Spectre-PHT (naive)

65

if c

then foo

else bar c

foo bar

Wang, G., Chattopadhyay, S., Biswas, A. K., Mitra, T.,
& Roychoudhury, A. (2020). KLEESpectre: Detecting
information leakage through speculative cache
attacks via symbolic execution. ACM TOSEM

Fork into 4 paths:

• 2 sequential paths

• + 2 extra transient path

• and verify constant-time

foo bar

RelSE for Spectre-PHT (but let’s be smarter)

66

if c

then foo

else bar c

foo bar

Daniel, Lesly-Ann, Sébastien Bardin, and
Tamara Rezk. "Hunting the Haunter: Efficient
Relational Symbolic Execution for Spectre
with Haunted RelSE." NDSS’ 21

Fork into 2 paths:

• 2 speculative paths

 -> seq OR transient

• invalidate transient by

adding constraint

Litmus tests

- Paths: 1546 → 370
- Time: 3h → 15s

Libsodium + OpenSSL

- Coverage: 2273 → 8634

Total

- Timeouts: 5 → 1

Experimental evaluation

Benchmark.

 Litmus tests

 Cryptographic primitives:

- tea
- donna
- Libsodium secretbox
- OpenSSL ssl3-digest-record
- OpenSSL mee-cdc-decrypt

ResultsBenchmark

[1] Cauligi, Sunjay, et al. "Constant-time foundations for the new spectre era." PLDI’20
[2] Daniel, Lesly-Ann, Sébastien Bardin, and Tamara Rezk. "Hunting the haunter-efficient relational symbolic execution for
spectre with haunted relse." NDSS’ 21
[3] Fabian, Xaver, Marco Guarnieri, and Marco Patrignani. "Automatic Detection of Speculative Execution
Combinations." CCS’22
[4] Vassena, Marco, et al. "Automatically eliminating speculative leaks from cryptographic code with blade." POPL’21
[5] Shivakumar, Basavesh Ammanaghatta, et al. "Typing High-Speed Cryptography against Spectre v1." SP’23
[6] Johannesmeyer, Brian, et al. "Kasper: scanning for generalized transient execution gadgets in the linux kernel." NDSS’22

And concretely?

● Find gadgets in crypto [1,2]

● Find attacks combining Spectre variants [2,3]

● Insert Spectre protections smartly [4,5]

● Type system to protect crypto against Spectre [5]

● Find gadgets in the Linux kernel [6]

Mitigate Spectre

Speculative constant-time:

- That’s hard!

- New speculation mechanisms?

Mitigate Spectre

Speculative constant-time:

- That’s hard!

- New speculation mechanisms?

We want security for CT code
Hardware can help

ProSpeCT
Provably Secure

Speculation for the
Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman,
Sébastien Bardin, Tamara Rezk, Frank Piessens

USENIX’23
KU Leuven, Inria, CEA

We need Secure Speculation for Constant-Time!

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware Secrecy Tracking

Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively
flow to unsafe instructions

Illustration with Spectre-v1

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Illustration with Spectre-v1

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Illustration with Spectre-v1

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

Illustration with Spectre-v1

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Illustration with Spectre-v1

Consider idx = len

 char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: load(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret
=

x not forwarded to load

How do I know that my defense works?

How do I know that my defense works?

Leakage
abstraction

Security
property

End-to-end security

ProSpeCT: Generic formal processor model for HST

Semantics of generic out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

All public values are leaked / influence predictions
→ Captures all known variants of Spectre

→ And futuristic mechanisms Load Value Prediction

Constant-time programs (ISA semantics)
do not leak secrets (microarchitectural semantics)

Security proof

Load Prediction: Rollback correct executions?

 char secret mysecret

1: x = load mysecret

2: y = x + 4

Load Prediction: Rollback correct executions?

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Load Prediction: Rollback correct executions?

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Resolve prediction:

- if mysecret = 0: Commit and continue to line 3
- if mysecret != 0: Rollback to line 1 That leaks!

Load Prediction: Rollback correct executions?

 char secret mysecret

1: x = load mysecret

2: y = x + 4
Predict x = 0

Compute y = 4

Resolve prediction:

- if mysecret = 0: Rollback to line 1
- if mysecret != 0: Rollback to line 1

Always rollback when
actual value is secret

Proteus: An Extensible RISC-V Core for Hardware Extensions
(RISC-V Summit ’23)

Marton Bognar, Job Noorman, Frank Piessens

● In/Out-of order pipelines

● Optimizations: branch predictors, cache, prefetchers, …

● Configurable: #exec units, ROB size, …

● Extensible: plugin system

● SpinalHDL 🠞 verilog 🠞 FPGA / simulator

A modular textbook processor to study HW extensions

Implementation on Proteus and Evaluation

Hardware Cost:

Synthesized on FPGA

• LUTs: +17%

• Registers: +6%

• Critical path: +2%

Performance overhead [1]

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient
Data-Centric Defense Mechanism against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in SW for CT code
when secrets are precisely annotated

Beyond Leakage
Exploit the microarchitecture
for (malware?) obfuscation

- Evtyushkin, Dmitry, et al. "Computing with time:
Microarchitectural weird machines." ASPLOS’21

- Wang, Ping-Lun, Fraser Brown, and Riad S. Wahby.
"The ghost is the machine: Weird machines in
transient execution." WOOT’23

- Horowitz, Gal, Eyal Ronen, and Yuval Yarom.
"Spec-o-Scope: Cache probing at cache speed." CCS’24

- Wang, Ping-Lun, et al. "Bending microarchitectural
weird machines towards practicality." USENIX
Security’24

Microarchitectural Weird Machines

- Registers: cache lines (hit = 1, miss = 0)
- Gates: transient data races
- Circuits: can run AES cipher (+ compiler [1])

[1] Wang, Ping-Lun, et al. "Bending microarchitectural weird machines towards practicality." USENIX Security’24

Applications:
- Hide computations from static/dynamic analysis
- μWM decryption in UPX (unpack -> decrypt in μWM -> decompress)

Example: AND and OR gates

Credit: Dries Vanspauwen

Transient window

Example: AND and OR gates

Credit: Dries Vanspauwen

Transient window

Existing tools are not precise enough :(

- Unicorn extension for emulating μWM
- Novel μarch abstractions (cache, RSB, exceptions)
- Correct emulation: 22/24 μWM (from gates to AES)
- Comparison with Gem-V: better accuracy / performance

More research questions

Are μWMs effective for obfuscation?
- Are dynamic analyses really ineffective against μWMs?
- Detection of μWM?
- Beyond emulation: de-obfuscation?

Improvements of WeMu
- More speculation mechanisms
- Precise microarchitectural models for:

- Spectre exploit prototyping
- Precise Spectre vulnerability analysis

We need to move beyond CT!

Mitigating Spectre in software is hard and costly

HW-SW co-designs can improve security & performance

My belief: HW-SW contracts are promising for end-to-end security

Conclusion

Many remaining challenges!

Software: Tools parametric in leakage contract & support HW defenses

New defenses: new attacks, emerging applications, platforms, etc.

Hardware verification: support defenses and scale existing techniques

Credit icons: https://www.flaticon.com/

https://www.flaticon.com/

