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Something | wish | knew before:
How to live with impostor syndrome

o Bachelor: felt like | didn’t belong as a woman
o ENS-Rennes: weak math background, no classe prépa
o Academia: very competitive environment full of smart people

o Hard to not compare yourself to others




What helped

e Know that you’re not alone

o Be kind to yourself and others

e Very supportive environments with amazing colleagues
(choose your advisors wisely)

e Do not compare to others: everyone is different!
e Amy Cuddy TED Talk - Fake it Till You Make it

e FOr women: L'Oréal-UNESCO For Women in Science



https://www.youtube.com/watch?v=RVmMeMcGc0Y
https://www.forwomeninscience.com/
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Security critical software is prevalent

What:
* Secure communications,

* Banking transactions, ... / A%
C
Where: A
SO

e Servers, smartphones, ...
e Shared by many users (cloud)

How: cryptography
* Mathematical guarantees, verified implems.
* But what about their execution in the physical world?



Processors are full of optimizations

Powu‘cﬂ‘g Stripe

\
Fi 1 5'MB

Ring Agen( L3$/
L3S Tags LLC

L2$[Control [ !
b k ]
‘fi : . Ring Agent§ 1.5/MB |
i ok - 1 8 e ) |
e \ P sl ' t
{FMA EUs | o H ¥ ; X L3$ Tags L3%/

| onPort 0 & 1 i

Ring Agent
-

L3S Tags, |

W
=
m\
H
N
|
>~

W

(adv9-x8t)

o

m - www.comptoir-hardwa

.com/Locuza_

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/



https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

B e L ]
Poweryd G a t
.ﬂw-d&—!lu‘ﬂ_

Out- 01 Order ‘"
Scheduling & S48
& o P

Retiremen
ALA-ALULL

"» (wnth hwg}
AVXJlZ n.uppor()

Processors are full of optimizations

PoweriGate:Stripe
Branch Predld ' * "§
|

1.5'MB

us Branch Buffer,t Clk

y

Ring Agent §

|

512/KB |
‘| Data ‘ v . [L3$ Tags

L3s$/
LLC

! 51

2'MB L25/MLC

Ring Agent §
+
L3s$:Tags

Intel Meteor Lake — Credit https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/



https://semianalysis.com/2022/05/26/meteor-lake-die-shot-and-architecture/

Processors are full of optimizations
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Processors are full of optimizations
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... Well security is not good :(

NN BUS'NESS Markets Tech Medla Success Video

Major chip flaws affect billions of devices
by Selena Larson @CNNTech

(© January 4, 2018: 9:44 AMET ° ° (Y J

Home News Sport Business Innovation Culture Arts Travel Earth Audio Video Live

'Foreshadow' attack affects Intel chips

15 August 2018 Share <5 Save []

Dave Lee
North America technology reporter

Spectre flaws continue to haunt Intel and AMD
as researchers find fresh attack method

The indirect branch predictor barrier is less of a barrier than hoped

A Thomas Claburn Fri 18 Oct 2024 14:.01 UTC

*non exhaustive list

13



Back to the basics

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems Cache-timing attacks on AES

Paul C. Kocher Daniel J. Bernstein *

Cryptography Research, Inc. . o )
607 Market Street, 5th Floor, San Francisco, CA 94105, USA. Department of Mathematics, Statistics, and Computer Science (M/C 249)
E-mail: paul@cryptography . com. The University of Illinois at Chicago
Chicago, IL 60607-7045

. . ) djb@cr.yp.to
Abstract. By carefully measuring the amount of time required to per-

form private key operations, attackers may be able to find fixed Diffie-
Hellman exponents, factor RSA keys, and break other cryptosystems.

Against a vulnerable system, the attack is computationally inexpensive Abstract. This paper demonstrates complete AES key recovery from
and often requires only known ciphertext. Actual systems are potentially known-plaintext timings of a network server on another computer. This
at risk, including cryptographic tokens, network-based cryptosystems, attack should be blamed on the AES design, not on the particular AES

and other applications where attackers can make reasonably accurate . .. . : :
timing measurements. Techniques for preventing the attack for RSA and library used by the server; it is extremely difficult to write constant-time

Diffie-Hellman are presented. Some cryptosystems will need to be re- high-speed AES software for common general-purpose computers. This

vised to protect against the attack, and new protocols and algorithms paper discusses several of the obstacles in detail.
may need to incorporate measures to prevent timing attacks.

1996 14



C

ontrol-flow leaks

if secret

then foo() | = ﬁ
else bar() | — ﬁ

- end-to-end timing

- different resource consumption
- branch predictor state

- instruction cache

- instruction prefetcher

- micro-op cache

15



Concrete example

/,Bool check _pin(char* guess) {‘\
for (i=0; i<4; i++)
if (guess[i] != pin[i])
return false;
return true;

\ /
[ﬁpin = 4321]
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Concrete example

/,Bool check _pin(char* guess) {‘\
for (i=0; i<4; i++)
if (guess[i] != pin[i])
return false;
return true;
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o B~ WDNNEFEL O

— 25
— 25
— 25
— 35
— 25
— 25




Concrete example

[bool check _pin(char* guess) {\

for (i=0; i<4; i++)
Attack
if (guess[i] != pin[i]) . .
return false; Complemiy: pin=4321
return true; from 10
to 10 X 4
\J Y

[ﬁpin = 4321]




Concrete example

[bool check _pin(char* guess) {\
good = true;

. . : Solution
for (i=0; i<4; i++) Make timing ind ; f
good &= guess[i] == pin[i]; ake timing independent of secret
return good; Remove secret-dependent branch!

\J Y,




Memory accesses leak

Victim program

X = tab[secret]

Data cache

{u]

(L& )

Attacker
Shares microarchitecture
with victim
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Memory accesses leak

Victim program

X = tab[secret]

Data cache

{u]

Prepare cache

(L& )

Attacker
Shares microarchitecture
with victim

23



Memory accesses leak

Victim program

X = tab[secret]

Data cache

Victim executes

L& )

Attacker
Shares microarchitecture
with victim
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Memory accesses leak

Victim program

X = tab[secret]

Data cache

Probe cache

slow

fast
fast

L& )

Attacker
Shares microarchitecture
with victim
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Memory accesses leak

Victim program

X = tab[secret]

Data cache

Probe cache

slow

fast
fast

- caches
- data pre-fetchers
- load/store dependencies

L& )

Attacker
Shares microarchitecture
with victim

26



Solution? Constant-time programming!

Unsafe instructions

* Control-Flow

* Memory accesses

* Variable-time
instr.

* Full software countermeasure

* De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.

e (Almost) Secure against micro-architectural attacks (hum...

27



Constant-time is not easy to implement

uint32_t select(uint32_t x, uint32_t y, bool secret) {
if (secret) return x;
else return y;

}

uint32_t ct_select(uint32_t x, uint32_t y, bool secret) {
signed b = 0 - secret;
return (x & b) | (y & ~b);

by

28



Compilers can break constant-time!

uint32_t ct _select(uint32_t x, uint32_t y, bool secret) {

lpublic ct_select_u32_v4 .

ct_select_u32_v4 proc near Slgned b — - Secret;

var_14= dword ptr -14h Nl \ .

var_D= byte ptr -0Dh : ( X & b ) | ( y & Nb ) b

var_C= dword ptr -0Ch

var_8= dword ptr -8

arg_0= dword ptr 4

arg_4= dword ptr &8

arg_8= byte ptr 0Ch

push esi public ct_select_u32_v4

sub esp, 10h ct_select_u32_v4 proc near
mov al, [esp+l4h+arg_8]

mov ecx, [esp+ldh+arg_4] P

mov edx, [esp+ldh+arg_0] < Cla ng_3.o _OO arg_O: byte ptr: .4

mov [esp+14h+var_8], edx arg_4= byte ptr 8

mov [esp+l4h+var_C], ecx arg_8= byte ptr 0Ch

and al, 1

mov [esp+14h+var_D], al mov al, [esp+arg_8]
mov al, [esp+l4h+var_D] test al, al

and al, 1 jz short loc_804842F
movzx ecx, al I I

mov edx, 0

sub edx, ecx I _33 () ___(:)53 -—..>

mov [esp+14h+var_14], edx C ang . Erﬁ v v
mov ecx, [esp+l4h+var_8] 29

and ecx, [esp+l4h+var_14] lea eax, [espt+arg_0]

mov edx, [esp+l4h+var_C] mov eax, [eax] loc_804842F:
mov esi, [esp+ldh+var_14] retn eax, [esp+arg_4]
Xor esi, OFFFFFFFFh eax, [eax]
and esi, edx

::v ::j;: :;: ct_select_u32_v4 endp
add esp, 10h

Pop esi

retn

ct_select_u32_v4 endp




What can we do about it?

Constant-time preserving compilers

Formal Verification of a Constant-Time Preserving C
Secure compilation of side-channel countermeasures: Compiter

the case of crypto graphic “constant-time”’ GILLES BARTHE, MP1 for Security and Privacy; Germany and IMDEA Software Institute, Spain
SANDRINE BLAZY, Univ Rennes, Inria, CNRS, IRISA, France

Gilles Barthe*, Benjamin Grégoiref, Vincent Laporte* BENJAMIN GREGOIRE, Tnria, France

“IMDEA Software Institute, Madrid, Spain REMI HUTIN, Univ Rennes, Inria, CNRS, IRISA, France
gilles.barthe@imdea.org vlaporte @imdea.org VINCENT LAPORTE, Inria, France
Inria, Sophia-Antipolis, France DAVID PICHARDIE, Univ Rennes, Inria, CNRS, IRISA, France
benjamin.gregoire@inria.fr ALIX TRIEU, Aarhus University, Denmark

Domain specific languages & compilers for crypto

FaCT: A DSL for Timing-Sensitive Computation Jasmin: High-Assurance and High-Speed Cryptography
SiijapBatlig Gy Soelias Bridn Joharincanieyer José Bacelar Almeida Manuel Barbosa Gilles Barthe
ucs Z;ln )l])iego USA ue SanyDiego USA UC San Diego, US Ay INESC TEC and INESC TEC and FCUP IMDEA Software Institute, Spain
’ ’ ’ Universidade do Minho, Portugal Universidade do Porto, Portugal
F;g:;]irg:gn R;?ii,ygg:y Ug(;l:: [I)EZI: %rs A Arthur Blot Benjamin Grégoire Vincent Laporte
ENS Lyon, France Inria Sophia-Antipolis, France IMDEA Software Institute, Spain
Benjamin Grégoire Gilles Barthe Ranjit Jhala
INRIA Sophia Antipolis, France MPI for Security and Privacy, UC San Diego, USA Tiago Oliveira Hugo Pacheco Benedikt Schmidt
Germany INESC TEC and FCUP INESC TEC and Google Inc.
IMDEA Software Institute, Spain Universidade do Porto, Portugal Universidade do Minho, Portugal

Deian Stefan

Pierre-Yves Strub
UC San Diego, USA

Ecole Polytechnique, France



What can we do about it?

Constant-time preserving compilers

Formal Verification of a Constant-Time Preserving C

Secure compilation of side-channel countermeasures: Compiter

the case of cryptographic “constant-time”’ GILLES BARTHE, M for Security and Privacy; Germany and IMDEA Software Institute, Spain

SANDRINE BLAZY, Univ Rennes, Inria, CNRS, IRISA, France
BENJAMIN GREGOI RE, Inria, France

Fight the compiler
And verify binary code

= — n € Ddccldl A cIad vidiiacl DalDosa [T1CS Ddl C
USC“;‘J%.C““%ES; UCGSHVDS°EH‘E;S N B“gg g°h]a)¥’nes“}‘seg'er INESC TEC and INESC TEC and FCUP IMDEA Software Institute, Spain

an LIego, a0 ICED, a0 LAEE0 Universidade do Minho, Portugal Universidade do Porto, Portugal

Fraser Brown Riad S. Wahby John Renner it o 8
Stanford, USA Stanford, USA UC San Diego, USA Arthur Blot Benjamin Grégoire Vincent Laporte
ENS Lyon, France Inria Sophia-Antipolis, France IMDEA Software Institute, Spain
Benjamin Grégoire Gilles Barthe Ranjit Jhala ' o . .
INRIA Sophia Antipolis, France MPI for Security and Privacy, UC San Diego, USA Tiago Oliveira Hugo Pacheco Benedikt Schmidt
Germany INESC TEC and FCUP INESC TEC and Google Inc.
IMDEA Software Institute, Spain Universidade do Porto, Portugal Universidade do Minho, Portugal
Deian Stefan Pierre-Yves Strub

UC San Diego, USA Ecole Polytechnique, France



Let's |
automate
CT
analysis

need to

formalize |

it first

have tools |

check
it for us

need to

formalize |}

it first
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Constant-Time (a bit more) Formally

2 executions that only differ in their secret input
must be indistinguishable to an observer

@
Public, Secret § Tl | Observation (pc + mem)

—
~L

XeX o
Public, Secret’? QO | Observation’ (pc + mem)

——="




Constant-Time (a bit more) Formally

2 executions that only differ in their secret input
must be indistinguishable to an observer

[1] Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security
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Several approaches [1]

Static Dynamic

® Type systems ® Record and compare observations
® Abstract interpretation e Statistical tests

e Symbolic execution ® Fuzzing

e Dynamic symbolic execution

[1] Geimer, Antoine, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel, Sébastien Bardin, and Clémentine Maurice. "A
systematic evaluation of automated tools for side-channel vulnerabilities detection in cryptographic libraries." In ACM CCS 2023.
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MAY 18-20, 2020

41st IEEE Symposium on
Security and Privacy

Bina ry- Level BINSEC/REL: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level
Symbolic Execution |

for Constant-Time

s=Binsec/Rel

() https://github.com/binsec/rel


https://github.com/binsec/rel

Background: Symbolic Execution

0x0080:
0x0084 :
0x0088:
Ox008c:
0x0090:

mul t, p, s
add t, t, 48
beqz t error
div t, s, t
[...]

Can error be reached?

37



Background: Symbolic Execution

0x0080:
0x0084 :
Ox0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
beqz t error

div t, s, t

[...]

>

Symbolic store
P™ 4
S g
pC > Ox0080
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Background: Symbolic Execution

0x0080:
0x0084 :
Ox0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
beqz t error

div t, s, t

[...]

>

Symbolic store
P™ 4

S g

top X g
pc > Ox0084
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Background: Symbolic Execution

0x0080:
0x0084 :
Ox0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
beqz t error

div t, s, t

[...]

>

Symbolic store
P™ 4
S g
pC > Ox0088
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Background: Symbolic Execution

0x0080:
0x0084 :
0x0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
beqz t error

div t, s, t

[...]

>

Symbolic store
P~ 4

S g

pCc — error
Path constraint
4 =0

0x0088

£=0

4,70

error

Ox008c

41



Background: Symbolic Execution

Ox0080: mul t, p, s Symbolic store L‘a = /A X 5’0-48
oxov84: add t, t, 48 D g Ox0088
0x0088: beqz t error ) se g
Ox008c: div t, s, t tr s X o -48
0 Y

0x0090: [...] DC > error =0 4,70

Path constraint
Can error be reached? =0
=> Query SMT-Solver

2

&= py X ¢-48 zg :’ £p=6 error @x008c
A ¢,=0is SAT? =8



Safety vs. 2-Hypersafety

2 executions that only differ in their secret input
must be indistinguishable to an observer

43



Secure Information Flow by Self-Composition®

Gilles Barthe! Pedro R. D’Argenio?
Tamara Rezk (corresponding author) *

Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program P;P’

Can re-use verification techniques/tools for safety!

44



Symbolic Execution for CT

0x0080:
0x0084 :
0x0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
begz t error

div t, s, t

[...]

Is program CT?
= Can branch differ in 2 executions?

45



Symbolic Execution for CT

Ox0080: mul t, p, s 5
0x0084: add t, t, 48 Is program CT:

0x0088: beqz t error = Can branch differ in 2 executions?
Ox008c: div t, s, t

0x0090: [...]

(2) Self-composition

| | ) & = p, X ¢,-48 )
/ A \

= public Models 2 executions Can branch differ?




Symbolic Execution for CT

0x0080:
0x0084 :
0x0088:
Ox008c:
0x0090:

mul t, p, s

add t, t, 48
beqz t error

div t, s, t

[...]

|L‘0= /bUX{‘a-48| foz/bd’

&, = py X ¢,-48

A
ty = py X ¢,-48

(2) Self-composition

Is program CT?
= Can branch differ in 2 executions?

(3) Solver?

N 4 #¢

X

7

= public

A

Models 2 executions

\
Can branch differ?
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Symbolic Execution for CT

Ox0080: mul t, p, s 5
0x0084: add t, t, 48 Is program CT:

0x0088: beqz t error = Can branch differ in 2 executions?
Ox008c: div t, s, t

0x0090: [...]

(2) Self-composition

’ & = p, X ¢,-48 ) _ -
|L‘0=Pax"o'48| ey N N 5% =5 Pg=®

ty = py X ¢,-48 k =0 ¢,=-8
/ A \

= public Models 2 executions Can branch differ?

48



Beyond Self-Composition: Optimization for SE

Relational Symbolic Execution

* 2 executionin 1 SE instance
e Maximize sharing
* Spare queries

Gian Pietro Farina*!, Stephen Chong'? and Marco Gaboardi*!

'University at Buffalo, SUNY
2Harvard University

BINSEC/REL: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level

* RelSE for CT
e Optimization for binary-level

Lesly-Ann Daniel*, Sébastien Bardin*, Tamara Rezk!

* CEA, List, Université Paris-Saclay, France
T INRIA Sophia-Antipolis, INDES Project, France

lesly-ann.daniel @cea.fr, sebastien.bardin@cea.fr, tamara.rezk @inria.fr




And concretely?




s=BiNnsec/Rel

EWRLL
Binary E,"Eé‘
X86-32 / 64 @
RISC-V 32
ARMv7/AARCH64/AMD64

Configuration

Concretize esp, .data,
canaries, ...
Libc stubs

https://binsec.github.io/

Analysis
IR SE/RelSE

Helpers Loader for ELF/PE
Build & simplify formulas

[...]

CT-analysis of cryptographic primitives

SMT-Solver

Boolector
Bitwuzla
z3, cvc4, yices
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https://binsec.github.io/

Preservation of constant-time by compilers

11 compiler versions Optimization setups
o 5 versions of clang for x86  Optimization level O1 ... O3
o 5 versions of gcc for x86 « Individual optimizations

o 1 version of gcc for ARM » X86-cmov-converter, if-conversion

=

Programs Compile
* Analyze 34 small programs &
 Total: 4148 binaries Analyze with Binsec/Rel

https://github.com/binsec/rel_bench/tree/main/properties_vs_compilers/ct



public sort2
sort2 proc near

arg_0= dword ptr 4
° arg_4= dword ptr 8 B'
Inar
LLVM # Binary y
mov eax, [esp+4+arg_4]
mov edx, [eax]
S & . A : mov esi, [eax+4]
L .‘risorrt‘Z( : :outz, int *in2) { Source e ccx, [eaxti]
2d cha C's cmp edx, es
C (in2[0] < in2[1]) - 1; jge short loc_80483B3
out2[0] = (~c & in2[0]) | (c & in2[1]); Lili
out2[1] = (~c & in2[1]) | (c & in2[0]); P
return (in2[0] < in2[1]); =
mov esi, edx
| LLVM-IR T
132 @sort2(i32* nocapture %out2, 132* nocapture readr ..y
load i32% %in2, align 4, !tbaa !1 loc_80483B3:
getelementptr inbounds 132* %in2, 132 1 mov edx, [esp+d+arg 0]
load i32* %2, align 4, 'tbaa !'1 gt e[:g"léa:“
P L = ige short loc_80483BF
select i1 %not., 132 %3, 132 %
e Er—ea 11
load i132* %2, align 4, !tbaa !1 il ea =
SR et e mov esi, ecx
= select il %
; s I
align 4, !tbaa !1
= load i32* 3 align 4, !tbaa !1 loc_80483BF: !
= icmp slt %9, %10 i S el ) i
= zext il &= 1 mov ecx, [e;x]
= fext Backend passes can still v jdomy (sl
. . . setl al
introduce violations! S o
retn
sort2 endp




Clang adds secret dependent memory access

1 sort2:
2 esi := load (in+@)
1 old soert2(i32*% out, 132+ in
voi (4 ut, 1 in) { 3 edi := load (in+4)
2 ad@ = load in[@] . .
‘ 4 cmp esi edi
3 al = load in[1] 5 edi := cmovle esi
4 a = select (a0 < al) a0 al 6 store (out+Q) edi
5 store a out[0] 7 in+0@

load in[1] . c= in+4

load in[@] 1= cmovge ecx
select (a@ < al) b1 bo := load edx

LLVM-IR

clang-9 -m32 —-03 —march=i686




Summary

e Constant-Time = de facto standard against microarchitectural SCA
e We can formalize CT as a 2-hypersafety

e There are tools to verify crypto primitives / find bugs

e We can find cool bugs introduced by compilers %"EB | nseC/Rel

LLVM analysis is not sufficient! ,&.’
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But constant-time is not enough!

NN BUS'NESS Markets Tech Medla Success Video

Major chip flaws affect billions of devices
by Selena Larson @CNNTech

0%,
(© January 4, 2018: 9:44 AM ET ° ° \Y

Home News Sport Business Innovation Culture Arts Travel Earth Audio Video Live

'Foreshadow' attack affects Intel chips

15 August 2018 Share <5 Save []

Dave Lee
North America technology reporter

Spectre flaws continue to haunt Intel and AMD
as researchers find fresh attack method

The indirect branch predictor barrier is less of a barrier than hoped

A Thomas Claburn Fri 18 Oct 2024 14:.01 UTC

@

GoFetch
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Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

1f (idx < len)
X = array[idx] ‘?
load (x)
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Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

if (idx < len) &
X = array[idx]
load (x)

Consider idx = len

— Predict condition true !
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Constant-time is vulnerable to Spectre

char arrayllen]

h et o e,
char mysecr —  Predict condition true !
1f (1idx < len) .

4— X = mysecret

X = array[idx]
load (x)

Consider idx = len



Constant-time is vulnerable to Spectre

char arrayllen]

char mysecret

if (idx < len) &

X = array[idx]

4— X = mysecret

load (x)

Leak mysecret to
microarchitecture!

Consider idx = len

— Predict condition true !
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PROTECT AGRINST SPECTRE?
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Mitigate Spectre

CTWASN'T HARD ENOUGH?




PROTECT AGAINST SPECTRE?

-

Part 1:
How to fix existing software?

CT WASN'T HARD ENOUGH?




= w DD

Fences to block speculative execution

char array[len]
char mysecret
1f (1dx < len)
X = array[1dx]
fence
load (x)

* Branch is mispredicted to true !
\ e fence stalls until branch is resolved

* Rollback before 1leak(mysecret)

o
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Speculative Constant-Time (SCT)

Constant-Time Foundations for the New Spectre Era

Sunjay Caul‘igif Craig Disselkoen’ Klaus v. Gleissenthall
Dean Tullsen’ Deian Stefan’ Tamara Rezk*  Gilles Barthe**

fUC San Diego, USA *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Idea: Security in the constant-time observation mode
on a speculative semantics

Many flavors of microarchitectural semantics / ways to define security (see [1])

[1] Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., & Stefan, D. (2022, May). SoK: Practical foundations for
software Spectre defenses. SP’22



Why is that hard?

Problem. Microarchitectural semantics with predictions and
out-of-order execution

Challenge. Microarchitectural features are complex, often undocumented

Goals. Find suitable abstraction to reason about Spectre
e Capture all variants of Spectre
* Keep it simple



Modelling speculative semantics

Litmus tests (328 instrutions):

* Sequential semantics
— 14 paths

* Speculative semantics
— 37M paths

THAT ESCALATED QUICKLY

Modelling all transient paths explicitly is intractable
We need to be smarter



RelSE for architectural semantics

if c
then foo

else bar

TAC

T N\ ~cC
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RelSE for Spectre-PHT (naive)

if c
then foo

else bar

|

TATC

TN\ ~cC

|mA=c||mac]

L

Fork into 4 paths:

» 2 sequential paths

e + 2 extra transient path
e and verify constant-time

Wang, G., Chattopadhyay, S., Biswas, A. K., Mitra, T.,
& Roychoudhury, A. (2020). KLEESpectre: Detecting
information leakage through speculative cache
attacks via symbolic execution. ACM TOSEM

68



RelSE for Spectre-PHT (but let’s be smarter)

if c
then foo * Fork into 2 paths:
else bar * 2 speculative paths
-> seq OR transient
yTT— T e invalidate transient by

adding constraint

Daniel, Lesly-Ann, Sébastien Bardin, and

Tamara Rezk. "Hunting the Haunter: Efficient
Relational Symbolic Execution for Spectre
with Haunted RelSE." NDSS’ 21
‘47 TAC +—] TN\ —C
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Experimental evaluation

Litmus tests Litmus tests
Cryptographic primitives: - Paths: 1546 — 370
- Time: 3h — 15s
- tea
- donna Libsodium + OpenSSL
- Libsodium secretbox - Coverage: 2273 — 8634

- OpenSSL ssI3-digest-record

Total
- OpenSSL mee-cdc-decrypt

- Timeouts: 5 — 1




And concretely?

e Find gadgets in crypto [1,2]

e Find attacks combining Spectre variants [2,3]

e Insert Spectre protections smartly [4,5]

e Type system to protect crypto against Spectre [5]
e Find gadgets in the Linux kernel [6]

[1] Cauligi, Sunjay, et al. "Constant-time foundations for the new spectre era." PLDI’20

[2] Daniel, Lesly-Ann, Sébastien Bardin, and Tamara Rezk. "Hunting the haunter-efficient relational symbolic execution for
spectre with haunted relse." NDSS’ 21

[3] Fabian, Xaver, Marco Guarnieri, and Marco Patrignani. "Automatic Detection of Speculative Execution

Combinations." CCS’22

[4] Vassena, Marco, et al. "Automatically eliminating speculative leaks from cryptographic code with blade." POPL’21

[5] Shivakumar, Basavesh Ammanaghatta, et al. "Typing High-Speed Cryptography against Spectre v1." SP’23

[6] Johannesmeyer, Brian, et al. "Kasper: scanning for generalized transient execution gadgets in the linux kernel." NDSS’22



Speculative constant-time:

- That’s hard!

- New speculation mechanisms?

Mitigate Spectre

CTWASN'T HARD ENOUGH2



Speculative constant-time:

- That’s hard!

- New speculation mechanisms?

Part 2:
We want security for CT code
Hardware can help

Y /’ \ \\
CT WASN'T HARD ENOUGH?



ProSpeCT

Provably Secure
Speculation for the
Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman,
Sébastien Bardin, Tamara Rezk, Frank Piessens

KU Leuven, Inria, CEA




We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
€ Hardware shall not speculatively leak secrets

_‘jﬂ But still be efficient and enable speculation
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Hardware Secrecy Tracking

Software side Hardware side
e Label secrets — ) ° Track security labels
e Constant-time program » Secrets do not speculatively
flow to unsafe instructions
ConTEXT: A Generic Approach for Mitigating . ) .
Spectre SpectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
Michaet Sehvar' hﬁ%ﬁ%ﬁﬁ?ﬂ?ﬁ:ﬂzgﬁ, Speculatlve Prlvacy Trackmg (SPT): Leaklilglir]:f(;nrnmatlon From 53{,:1‘15 iﬁil;i};;s Unﬂﬁfggﬁ{;‘fﬂsas
Speculative Execution Without Compromising Privacy
Rutvik Choudhary Jiyong Yu
Christopher W. Fletcher Adam Morrison

UIUC, USA Tel Aviv University, Israel 7 6




lllustration with Spectre-vl

char arrayl[len]
secret char mysecret
if (idx < len)

X = array[1dx]
3: load (x)

Consider idx = len
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lllustration with Spectre-vl

char arrayl[len]
secret char mysecret -~
if (idx < len)
X = array[1dx]
3: load (x)

/ Developer marks secrets

Consider idx = len
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lllustration with Spectre-vl

char arrayllen]

secret char mysecret -~

/ Developer marks secrets

— Speculative execution !

if (idx < len) ==
X = array[1dx]
3: load (x)

Consider idx = len
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lllustration with Spectre-vl

char arrayllen]

secret char mysecret -~

/ Developer marks secrets

if (idx < len) -=—

X = array[idx] =
3: load (x)

X

Consider idx = len

— Speculative execution !

mysecret:secret
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lllustration with Spectre-vl

char array[len] / Developer marks secrets
secret char:mysecnet“

. . — Speculative execution !
1f (idx < len) =

X = array[i1dx] = X = mysecret:secret
3: load (x)
\ Speculative execution + secret
Consider idx = len =

x not forwarded to 1o0ad
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How do | know that my defense works?

YOUBUILTIA
HARDWARE IIEFENSE?

THAT'S CUTE...
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How do | know that my defense works?

- S Sty
FENSE?
{il ; !’lr‘.i i

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Képr , Jan Reineke?, and Pepe Vila*
*IMDEA Software Institute TMicrosoft Research tSaarland University

THAT'S CUTE...
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(

&

\
Hardware-Software Contracts for
Secure Speculation
Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute TMicrosoft Research *Saarland University )

X

property —1|  abstraction

- _g?——»

<

End-to-end security
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ProSpeCT: Generic formal processor model for HST

Semantics of generic out-of-order speculative processor with HST
—  Abstract microarchitectural context

—  Functions update, predict, next
All public values are leaked / influence predictions
—  Captures all known variants of Spectre %}
Q
—  And futuristic mechanisms Load Value Prediction T

Security proof

L—ﬁ Constant-time programs (ISA semantics)
@ do not leak secrets (microarchitectural semantics)
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Load Prediction: Rollback correct executions?

char secret mysecret
x = load mysecret

y = x + 4
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Load Prediction: Rollback correct executions?

char secret mysecret

x = load mysecret Predict x=0 !
y = X + 4 <

Compute y =4




Load Prediction: Rollback correct executions?

char secret mysecret

X = load mysecret

y = X + 4 <

Resolve prediction:

if mysecret=0: Commitand continue to line 3
if mysecret |=0: Rollbacktolinel

Predict x =0 2

Compute y =4

That leaks!
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Load Prediction: Rollback correct executions?

char secret mysecret

x = load mysecret

y = X + 4 <

Resolve prediction:

if mysecret =0: Rollbacktolinel
if mysecret |=0: Rollbacktolinel

Predict x=0 !

Compute y =4

Always rollback when

actual value is secret
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Proteus: An Extensible RISC-V Core for Hardware Extensions
(RISC-V Summit "23)

Marton Bognar, Job Noorman, Frank Piessens

A modular textbook processor to study HW extensions
In/Out-of order pipelines

Optimizations: branch predictors, cache, prefetchers, ...
Configurable: #exec units, ROB size, ...

Extensible: plugin system

SpinalHDL [ verilog [1 FPGA / simulator |
R
RNSC 0



Implementation on Proteus and Evaluation

Performance overhead [1]

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%
Conservative (All) 10% 25% 36% 45%

No overhead in SW for CT code
when secrets are precisely annotated

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient
Data-Centric Defense Mechanism against Spectre Attacks”. In: DAC. 2019

Hardware Cost:
Synthesized on FPGA
e LUTs: +17%

* Registers: +6%

* Critical path: +2%
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Conclusion

@o’} We need to move beyond CT!
Mitigating Spectre in software is hard and costly

HW-SW co-designs can improve security & performance

@ My belief: HW-SW contracts are promising for end-to-end security
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Many remaining challenges!

\ Software: PL support + parametric in leakage contract

New defenses: new attacks, emerging applications, platforms, etc.

Hardware verification: support defenses and scale existing techniques

@ &I

Credit icons: https://www.flaticon.com/
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