
Libra
Architectural Support for Principled, Secure and
Efficient Balanced Execution on High-End Processors

Hans Winderix, Marton Bognar, Lesly-Ann Daniel, Frank Piessens

ACM CCS 2024 - October 15th

Libra
Architectural Support for Principled, Secure and
Efficient Balanced Execution on High-End Processors

Hans Winderix, Marton Bognar, Lesly-Ann Daniel, Frank Piessens

ACM CCS 2024 - October 15th

Side-channel leak control flow

Executions produce observations
● End-to-end timing
● Microarchitectural resource usage

○ cache usage
○ port contention
○ etc.

3

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

Side-channel leak control flow

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

s1?

4

Side-channel leak control flow

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

s1=a0!

5

State of the art software countermeasures

 [1] Molnar et al., The program counter security model: Automatic detection and removal of control-flow side channel attacks (ICISC 2005)

sub t0 s1 a0

setqz t0 t0

addi t0 t0 -1 ;true mask

not t1 t0 ;false mask

and t2 a1 t0

add a1 a2 a3

and a1 a1 t1

or a1 a1 t2

and t2 a2 t1

add a2 a3 a4

and a2 a3 t0

or a2 a2 t2

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

 j End

End:

=

 Linearization (Molnar [1]) Balancing

6

Branch balancing, are you kidding me?

“What about branch predictors or instruction caches?”
– Any side-channel expert

“We all know it’s insecure on high-end processors!”
– Any reasonable cryptographer

7

Branch balancing, are you kidding me?

“But actually why not?”
– Hopeful dreamer

8

Research questions

Can it improve performance over linearization?

How to securely balance branches on high-end CPUs?

What microarchitectural features leak control-flow?

9

Contributions

Can it improve performance over linearization?

How to securely balance branches on high-end CPUs?

What microarchitectural features leak control-flow?

➔ HW implementation & evaluation (19.3% less overhead)

➔ Libra: Architectural support for balanced execution

➔ Characterization of HW sources of control-flow leakage

10

Characterization

 HW sources of

control-flow leakage
Literature review

65 attack papers

29 optimizations

11

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

12

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

13

Disable optims. producing unbalanceable leakage?
Give up on balancing?

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW ☺
➔ but not in a principled way ☹

➔ cannot be handled in SW ☹

Unbalanceable leakage
Dependent of pc

14

Disable optims. producing unbalanceable leakage?
Give up on balancing?

No! We handle unbalanceable leakage
 with new HW/SW co-design!

Libra: a new HW/SW
co-design for balancing

SW handles balanceable
leakage

HW support to address
unbalanceable leakage

efficiently

15

HW/SW Contract for
balanced execution

1. Leakage classes
○ same observation – add x1 x1 x2 ~ sub x1 x1 x2

○ dummy (no-op) instruction for each class – mv x1 x1

2. Safe/Unsafe instructions
○ Safe: timing does not depend on operands – add x1 x1 x2

○ Unsafe: timing depends on operands – load x1 (x2)

16

2-D Leakage contract for balanced executions

Software balances secret branches w.r.t. contract

17

bnz secret End

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

Software balances secret branches w.r.t. contract

18

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

1. Instruction per instruction

Software balances secret branches w.r.t. contract

19

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

1. Instruction per instruction

2. With dummy instruction in

same leakage class

Software balances secret branches w.r.t. contract

20

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software balances secret branches w.r.t. contract

21

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software balances secret branches w.r.t. contract

22

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software secure w.r.t. balanceable observervations

Software balances secret branches w.r.t. contract

23

bnz secret Target

 addi a1 a1 1

 load a2 (a3)

 j End

End: [...]

~
~
~

 addi a1 a1 0

 load x0 (a3)

 j End

1. Instruction per instruction

2. With dummy instruction in

same leakage class

3. Balance operands of unsafe

instructions

Software secure w.r.t. balanceable observervations

… But still insecure w.r.t. unbalanceable observations

I can still see differences
in instruction cache!

Folding transformation

24

+

Key Idea: interleave secret-dependent branches

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

add a1 a1 1

add a1 a1 0

load a2 (a3)

load x0 (a3)

j End

j End

slice

Folding transformation

25

+

ISA extension to inform CPU:

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.bnz secret offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

➔ how to navigate folded region
➔ secret region so adapt behavior

Folding transformation

26

+

ISA extension to inform CPU:

bnz secret Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.bnz secret offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

➔ how to navigate folded region
➔ secret region so adapt behavior

Important requirement: slice-granular leakage

Hardware guarantees slice-granular leakage?

 Optimizations producing unbalanceable leakage

27

5 subcategories

guidelines to adapt for Libra

Example: Slice-granular fetch-decode

Evaluation Q1. Feasibility

Q2. Security

Q3. Performance

Q4. HW cost

28

32-bit RISC-V implementation on Proteus

● instruction caches

● instruction prefetcher

● branch target predictor

Q1. Feasibility ✅

Sources of unbalanceable leakage.

➔ disable in folded regions

Libra-aware fetch unit

29

Security evaluation

Benchmark 11 programs [1]

● baseline

● balanced

● linearized

● libra

[1] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted hardening of embedded software against interrupt
latency side-channel attacks,” in EuroS&P, 2021.

Q2. Security ✅

RTL-level noninterference testing

- Run programs with ≠ secret

- Monitor selected signals

30

Execution time overhead

Q3. Performance ✅

Balanced
(insecure)

Linearized
(secure)

Libra
(secure)

Min +0% +8% -2%

Max +282% +225% +227%

Mean +42% +56% +45%

Compared to linearization

 -19.3% overhead

31

Hardware Cost (FPGA)

Q4. HW cost ✅

32

Base Libra Increase

LUT 16.5k 18.4k +11%

Registers 13.6k 14.9k +9.5%

Critical path 37.4ns 37.4ns +0%

Small area increase

No impact on CP

Dream of balanced executions come true!

33

Balance + Fold secret branches

Keep HW optimizations

Slice-granular leakage

Libra: new HW/SW co-design for balancing

HW/SW Contract balancing

github.com/proteus-core/libra

Credit icons: Flaticon

https://github.com/proteus-core/libra

34

Backup

A new era for balancing?

35

Well, there are still challenges!

● Verif/synthesis for balancing contracts

● Balancing transformation

● Evaluation on larger benchmarks

● Feasibility with more complex

optimizations?

Hardware guarantees slice-granular leakage?

Unbalanceable
leakage

Instr-specific optims.

E.g. µ-op cache

In secret region, disable or

do operation on whole slice

pc-dependent mapping

E.g. pc-dep prefetcher

Slice-based mapping

Inhibit dummy creation

E.g. silent-store opt.

In secret regions: disable

opt. or blacklist stores

pc-dependent buffering

E.g. I-cache, I-prefetcher

Slice-granular fetch

36

More in the paper

Advanced features

● Nested secret-dependent regions

● Function calls

○ lo.call + fold with dummy

○ Save/Restore Libra context

Formalization

● ISA semantics

● Security definitions

● Folding transformation

○ Proof of correctness

○ Proof of security

37

