
Libra
Dream of Secure Balanced Execution on
High-End Processors? - Let’s Make it Real!

Hans Winderix, Marton Bognar, Lesly-Ann Daniel, Frank Piessens

ACM CCS ’24
Accepted

Shonan Meeting – Microarchitectural attacks and defenses

The control-flow leakage (CFL) problem

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

Executions produce observations
● End-to-end timing
● Microarchitectural resource usage

○ cache usage
○ port contention
○ etc.

2

The control-flow leakage (CFL) problem

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

s1?

3

The control-flow leakage (CFL) problem

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

End:

s1=a0!

4

State of the art software countermeasures

 [1] Molnar et al., The program counter security model: Automatic detection and removal of control-flow side channel attacks (ICISC 2005)

sub t0 s1 a0

setqz t0 t0

addi t0 t0 -1 ;true mask

not t1 t0 ;false mask

and t2 a1 t0

add a1 a2 a3

and a1 a1 t1

or a1 a1 t2

and t2 a2 t1

add a2 a3 a4

and a2 a3 t0

or a2 a2 t2

beq s1 a0 Target

add a1 a2 a3

j End

Target:

add a2 a3 a4

 j End

End:

=

 Linearization (Molnar [1]) Balancing

5

Branch balancing, are you kidding me?

“What about branch predictors or instruction caches?”
– Any side-channel expert

“We all know it’s insecure on high-end processors!”
– Any reasonable cryptographer

6

Branch balancing, are you kidding me?

“But actually why not?”
– Hopeful dreamer

7

Research questions

Can it improve performance over linearization?

How to securely balance branches on high-end CPUs?

What microarchitectural features leak control-flow?

8

Contributions

Can it improve performance over linearization?

How to securely balance branches on high-end CPUs?

What microarchitectural features leak control-flow?

➔ HW implementation & evaluation (19.3% less overhead)

➔ Libra: Architectural support for balanced execution

➔ Characterization of HW sources of control-flow leakage

9

Characterization

 HW sources of

control-flow leakage
Literature review

65 attack papers

29 optimizations

10

Balanceable leakage
Independent of pc

● instruction latency

● data cache

● data TLB

● loads/store buffer dep.

● data dependencies

● …

● instruction cache

● instruction TLB

● instruction prefetcher

● branch predictors

● µ-op caches

● …

➔ can be handled in SW :-)
➔ but not in a principled way :-(

➔ cannot be handled in SW :-(

Unbalanceable leakage
Dependent of pc

11

We need a new HW/SW co-design for balancing

Efficient: do not disable HW optimizations
Common case: keep all optimizations enabled
Secret-dependent region: keep as many optimizations as possible

Principled: Leakage contract for balanced execution

Full side-channel security

Security-oriented HW/SW co-design

12

Can be leveraged by SW to write secure code

Libra

SW handles balanceable
leakage (principled)

HW support to address
unbalanceable leakage

13

Libra Leakage Contracts

Augment ISA with 2-D leakage contract

1. Leakage classes
○ same class = same observation (e.g. add x1 x2 ≈ sub x1 x2)

○ dummy (no-op) instruction for each class (e.g., mv x1 x1)

2. Safe/unsafe instructions
○ Safe instr: timing does not depend on operand – add x1 x2

○ Unsafe instr: timing depends on operand – load x1 (x2)

14

Libra Leakage Contracts

Used by software to balance secret-dependent regions

15

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

End:

Libra Leakage Contracts

Used by software to balance secret-dependent regions

16

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

End:

 addi a1 a1 1

 load a2 (a3)

 j End

~
~
~

Balance instruction by instruction

Libra Leakage Contracts

Used by software to balance secret-dependent regions

17

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

End:

 addi a1 a1 0

 addi a1 a1 1

 load a2 (a3)

 j End

~
~
~

Instructions from same class

Libra Leakage Contracts

Used by software to balance secret-dependent regions

18

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

End:

 addi a1 a1 0

 load x0 (a3)

 addi a1 a1 1

 load a2 (a3)

 j End

~
~
~

Balance operands of unsafe instr.

Libra Leakage Contracts

Used by software to balance secret-dependent regions

19

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

Software balanced w.r.t. weak observer

… But still insecure w.r.t. strong observer

Libra Folding Transformation

Key Idea: interleave instructions of secret-dependent regions

20

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

 addi a1 a1 0

 load x0 (a3)

 j End

 addi a1 a1 1

 load a2 (a3)

 j End

~
~
~ slice

Libra Folding Transformation

Key Idea: interleave instructions of secret-dependent regions

21

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

add a1 a1 1

add a1 a1 0

load a2 (a3)

load x0 (a3)

j End

j End

slice

Fold memory layout of secret regions
➔ instr. in slice are contiguous

Libra Folding Transformation

Key Idea: interleave instructions of secret-dependent regions

22

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.beq s1 a0 offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

slice

Level-offset branch informs CPU:
➔ how to navigate folded region
➔ enter secret region so adapt behavior

Libra Folding Transformation

Key Idea: interleave instructions of secret-dependent regions

23

beq s1 a0 Target

addi a1 a1 1

load a2 (a3)

j End

Target:

addi a1 a1 0

 load x0 (a3)

 j End

End:

lo.beq s1 a0 offT:1 offF:0 #bb:2

add a1 a1 1 ;pc+2

add a1 a1 0 ;pc+2

load a2 (a3) ;pc+2

load x0 (a3) ;pc+2

lo.beq x0 offT:0 offF:0 #bb:1

lo.beq x0 offT:0 offF:0 #bb:1

slice

pc leaks at slice granularity

How to satisfy slice-granular leakage ?

Unbalanceable
leakage

Instr-specific opt.

E.g. µ-op cache

In secret region, disable or

do operation on whole slice

pc-dependent mapping

E.g. pc-dep prefetcher

Slice-based mapping

Inhibit dummy creation

E.g. silent-store opt.

In secret regions: disable

opt. or blacklist stores

pc-dependent buffering

E.g. I-cache, I-prefetcher

Slice-granular fetch

24

More in the paper

Advanced features

● Nested secret-dependent regions

● Function calls

○ lo.call + fold with dummy

○ Save/Restore Libra context

Formalization

● ISA semantics

● Folding transformation

○ Proof of correctness

○ Proof of security

25

Evaluation Q1. Feasibility

Q2. Security

Q3. Performance

Q4. HW overhead

26

PoC: 32-bit RISC-V implem. on Proteus

● branch target predictor

● instruction caches

● instruction prefetcher

Q1. Feasibility ✅

Sources of unbalanceable leakage.

➔ disable in folded regions

Libra-aware fetch unit

Level-offset branch. Repurpose 2 prefix bits in RISC-V branches encoding

Q4. HW-Overhead ✅
HW cost: No impact on CP

LUT: +11% (16.5k -> 18.4k), Reg: +9.5% (13.6k -> 14.9k)

27

Evaluation

Benchmark

11 programs from [1]:

● baseline

● balanced

● linearized

● folded

[1] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted hardening of embedded software against interrupt
latency side-channel attacks,” in EuroS&P, 2021.

Q2. Security ✅

RTL-level noninterference testing

Run programs with ≠ secret & monitor:

● branch predictor state

● addresses in D/I-caches

● instruction prefetcher

● execution-unit occupancy

28

Performance

Q3. Performance ✅

Bal. Linear. Folded

Min +0% +8% -6%

Max +41% +2% +16%

Mean +9% +20% +3%

Binary size overhead

Bal. Linear. Folded

Min +0% +8% -2%

Max +282% +225% +227%

Mean +42% +56% +45%

Execution time overhead

Overhead relative to linearization: -19.3%
29

We need a new HW/SW co-design for balancing

Efficient: do not disable HW optimizations
Common case: keep all optimizations enabled
Secret-dependent region: keep as many optimizations as possible

Principled: Leakage contract for balanced execution

Full side-channel security

Security-oriented HW/SW co-design

30

Can be leveraged by SW to write secure code

Summary

31

Balances secret regions
Applies folding

HW optimizations enabled

Slice-granular leakage

A new era for balancing?

32

Well, there are still challenges!

● Verif/synthesis for balancing contracts

● Balancing transformation

● Evaluation on larger benchmarks

● Feasibility with more complex

optimizations?

Exploring HW-SW
Co-Designs

Let’s take a dive

33

Proteus: An Extensible RISC-V Core for Hardware Extensions
(RISC-V Summit ’23)

Marton Bognar, Job Noorman, Frank Piessens

● In/Out-of order pipelines

● Optimizations: branch predictors, cache, prefetchers, …

● Configurable: #exec units, ROB size, …

● Extensible: plugin system

● SpinalHDL 🠞 verilog 🠞 FPGA / simulator

● Validate: HW fuzzing (in progress)

A modular textbook processor to study HW extensions

34

● CT code secure against Spectre

● Without sacrificing speculation

● Design proven secure w.r.t. contract

● Holds for many variants of Spectre

ProSpeCT: Provably Secure Speculation for the
Constant-Time Policy
(USENIX’23)
Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, Frank Piessens

SW: annotate secrets
HW: no speculation on secrets

35

Architectural Mimicry: Innovative Instructions to Efficiently
Address Control-Flow Leakage in Data-Oblivious Programs
(SP’24)
Hans Winderix, Marton Bognar, Job Noorman, Lesly-Ann Daniel, Frank Piessens

● Principled control-flow hardening

● Support for linearization / balancing

● Accelerate linearized code

HW: Mimic execution (imitate μarch behavior)
SW: ISA extension to control it

36

Challenges?

Ocean is
Large & Murky

37

Evaluate & compare?

Trade-offs to explore?

● Hardware costs / feasibility

○ How to evaluate robustly?

○ Generalization ≠ (μ)arch?

● Security guarantees

● HW/SW changes

● Performance on large code

○ Need compiler support

○ Compilers are not really modular

○ Unified benchmark?

● Performance

● Power

38

39

https://github.com/proteus-coreSoon to appear :)

https://github.com/proteus-core

Credit

<a
href="https://www.freepik.com/free-
vector/woman-thinking-portrait-isola
ted-illustration_88817918.htm#from
View=search&page=1&position=0&
uuid=2c5e4588-0d46-44f8-bf27-f6d
40dd9c1ef">Image by djvstock on
Freepik

40

