
Formal methods to protect against
Microarchitectural attacks

Seminar in Cybersecurity – KU Leuven

Lesly-Ann Daniel – KU Leuven

Who am I?

2

Phd Student
• Symbolic Binary-Level Code Analysis for

Security

• CEA List & Université Côte d’Azur (France)

• Sébastien Bardin and Tamara Rezk

Postdoc
• Hardware /Software co-Designs for

Microarchitectural Security
• KU Leuven (Belgium)
• Frank Piessens

2018–2021 2021–now

Outline

1. Microarchitectural side-channel attacks
• What are microarchitectural side-channel attacks?

• How can formal methods help mitigating them?

2. Spectre attacks
• More hardware optimizations = more side-channels

• Model the microarchitecture with formal methods?

3. Mind the gap: model <> HW
• HW/SW contracts to the rescue!

Microarchitectural side-channel attacks

4

PART 1

How formal methods can help you protect
your secrets from the vagaries of time

What are side-channels?

5

Programs manipulate secret data

6

Critical software is prevalent:
• Secure communications
• Banking transactions
• Protect confidential data

Their security relies on cryptography:
• Mathematical guarantees
• Verified implementations (no bugs, functional)
• But what about their execution in the physical world?

… that can be observed by attackers!

7

?

… that can be observed by attackers!

8

?

… that can be observed by attackers!

9

!

… that can be observed by attackers!

10

!

Timing and microarchitectural attacks can be run remotely [1]

[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003

Concrete example

11

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=????

Concrete example

12

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

pin=????

Concrete example

13

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

pin=4???

Concrete example

14

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4???

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…

Concrete example

15

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4???

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…

Concrete example

16

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=43??

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…

Concrete example

17

bool check_pin(char* guess) {
 for (i=0; i<4; i++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4321
Attack

Complexity:
from 104

to 10 × 4

Countermeasure

18

bool check_pin(char* guess) {
 good = true;
 for (i=0; i<4; i++)
 good &= guess[i] == pin[i];
 return good;
}

Make timing independent of secret
Remove secret-dependent branch!

if secret

then foo()

else bar()

How can secrets leak?

secret→

→ secret

Control-flow leaks
- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- …

trace

trace’

trace

trace’

How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache

How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache

Prepare cache

How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache Victim executes

How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache

fast
slow
fast

Probe cache

How can secrets leak?

Variable time instructions leak
- divisions
- multiplication
- depends on microarchitecture
- …

x = mul y z

z = 0 →

→ z ≠ 0

z = 0 z ≠ 0

Why does it matter?

1996
2005

Solution? Constant-time programming!

26

?

Already used in many cryptographic implementations

Write programs with:
• No secret-dependent branches
• No secret-dependent memory

accesses

Constant-time is not easy to implement

27

clang-3.0 –O0

Compilers can break constant-time!

28

clang-3.0 –O3

clang-3.0 –O0

Compilers can break constant-time!

29

clang-3.0 –O3

Need to reason about CT at low-level (assembly)!

30

Constant-time programming, formally?

31

Side-channel observations produced by program executions must
be independent from secret input

Constant-time programming, formally?

32

Side-channel observations produced by program executions must
be independent from secret input

How do we formalize program executions?

System model

33

Small asm
language

Configurations

System model

34

Expression evaluation

Instruction evaluation

A program is safe if for any

initial configuration and number of steps

if then is not “bad”

What can we do with that?

35

Check safety property

Example: no runtime error, no division by 0

Constant-time programming, formally?

36

Side-channel observations produced by program executions must
be independent from secret input

How do we define side-channel observations?

Define side-channel observations

37

Semantics instrumented with observations

Constant-time observation mode (or leakage model)
• Program counter is observable
• Memory addresses are observable

Other observation modes are possible

Define side-channel observations

38

Additions leak an atomic leakage

Loads leak their address

Define side-channel observations

39

Control-flow instruction leak their target

Constant-time programming, formally?

40

Side-channel observations produced by program executions must
be independent from secret input

What does it mean to be independent from secret input?

Define security

41

Define public/secrets

Partition state into public (low) / secret (high)
registers and memory

Low-equivalence relation

Two configurations are low-equivalent
if they have the same public values

Definition: Side-channel security

42

Observation’ (pc + mem)

Observation (pc + mem)Public, Secret

Public, Secret’

Definition: Side-channel security

43

Property relating 2 execution traces (2-hypersafety) [1]

[1] Clarkson, Michael R., and Fred B. Schneider. "Hyperproperties." Journal of Computer Security (2010)

Now how do we verify CT?

44

Several approaches

Static

• Type systems

• Abstract interpretation

• Symbolic execution

45

Dynamic

• Record and compare observations

• Statistical tests

• Fuzzing

• Dynamic symbolic execution

Several approaches

Static

• Type systems

• Abstract interpretation

• Symbolic execution

46

Dynamic

• Record and compare observations

• Statistical tests

• Fuzzing

• Dynamic symbolic execution

Symbolic Execution [1,2]

47

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

48

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

p ↦ 𝑝
s ↦ 𝑠

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

49

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic Execution [1,2]

50

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic Execution [1,2]

51

p = 6
s = 8

Can error be reached?

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

SMT-Solver

Symbolic store Path predicate

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

CT is a 2-hypersafety!

52

Property relating 2 execution traces (2-hypersafety) [1]

Verification techniques/tools for safety do not apply

53

Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program P;P’

Can re-use verification techniques/tools for safety!

SE for constant-time via self-composition

54

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Can c = 0 depend on s?

SE for constant-time via self-composition

55

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Formula F(𝑝, 𝑠)

Symbolic Execution

𝑐 = 𝑝 × 𝑠 − 48

SE for constant-time via self-composition

56

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48 ∧

𝑐′ = 𝑝′ × 𝑠′ − 48

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution

Self-composition

Self-composed
formula

Models 2 executions

SE for constant-time via self-composition

57

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48 ∧

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution

Self-composition

Self-composed
formula

= public Models 2 executions Can branch differ?

SE for constant-time via self-composition

58

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

SMT-Solver

p = 6, s = 8
p’ = 6, s’=1

F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution

Beyond self-composition: Optimization for SE

Limitations:

• Whole formula is duplicated

• High number of queries to the solver

59

F(𝑝, 𝑠, 𝑝′, 𝑠′)

Many techniques to optimize self-composed programs…
Parallel SC, Product programs, Lazy SC, etc.

Beyond self-composition: Optimization for SE

60

• 2 execution in 1 SE instance
• Maximize sharing
• Spare queries

• RelSE for CT
• Optimization for binary-level

Formalization and theorems

61

Theorem: RelSE Correct for Bug-Finding

Theorem: Correct for Bounded-Verification

CT-query is satisfiable
at step n-1 in RelSE

No CT-query is satisfiable
for all n paths in RelSE

≠

And concretely?

62

63

X86-32 / 64
RISC-V 32
ARMv7/AARCH64/AMD64

Binary SMT-Solver

SE/RelSE
Backward-bounded SE
Concrete interpretation

Loader for ELF/PE
Build & simplify formulas
[…]

IR

Analysis

Helpers

Boolector
Bitwuzla
z3, cvc4, yices

https://binsec.github.io/

Configuration
Concretize esp, .data,
canaries, …
Libc stubs

?

CT-analysis of cryptographic primitives

https://binsec.github.io/

11 compiler versions
• 5 versions of clang for x86

• 5 versions of gcc for x86

• 1 version of gcc for ARM

64

Preservation of constant-time by compilers

Optimization setups

• Optimization level O1 … O3

• Individual optimizations

• X86-cmov-converter, if-conversion

Fully reproducible build: Nix virtual env

Programs

• Analyze 34 small programs

• Total: 4148 binaries

Compile
&

Analyze with Binsec/Rel

https://github.com/binsec/rel_bench/tree
/main/properties_vs_compilers/ct

65

LLVM-IR ≠ Binary!

Source

Binary

Backend passes can still
introduce violations!

LLVM-IR

66

Clang adds secret dependent memory access

LLVM-IR
clang-9 –m32 –O3 –march=i686

Recap

• Constant-Time = de facto standard against microarchitectural SCA

• We can formalize CT as a 2-hypersafety

• There are tools to verify crypto primitives / find bugs

• We can find cool bugs introduced by compilers

67

LLVM analysis is not sufficient!

Spectre Attacks

68

PART 2

Or why is my code still leaking and
what can I do about it?

Spectres are haunting our code

69

• Exploit speculations in (almost all) processors

• Wrong speculation = transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in microarchitecture during
transient execution & recover them with microarchitectural attacks

2018

Constant-time is vulnerable to Spectre

70

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Is this code secure?

Leaks x to the microarchitectural state
(e.g. load, or branch instr.)

Secure iff mysecret does
not flow to leak

Constant-time is vulnerable to Spectre

71

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

ISA (sequential) execution

Conditional bound check ensures
idx is in bounds

x only contains public data

Constant-time is vulnerable to Spectre

72

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Actual (speculative) execution

Branch condition can be
(mis)predicted

Can I exploit that to
leak(mysecret) ?

Constant-time is vulnerable to Spectre

73

1. Trains branch predictor to predict true

2. Run victim with idx = len

• Branch is mispredicted to true

• OOB access to mysecret

• Transient execution leak(mysecret)

3. Extract mysecret from microarch.

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Many variants of Spectre

1. Misspeculation leads to transient execution

 Many sources of speculation

2. Transient execution leaks secret via side-channel

 Many side-channel vectors (timing, caches, buffers, etc.)

74

Many sources of speculation ⇔ many variants of Spectre [1]
• Spectre-PHT: conditional branch
• Spectre-BTB: indirect branch
• Sprectre-RSB: return address
• Spectre-STL: memory dependencies
• etc. (see [2] for the most recent list)

[1] Canella, Claudio, et al. "A systematic evaluation of transient execution attacks and defenses." USENIX Security (2019)

[2] Randal, Allison. "This is how you lose the transient execution war." arXiv (2023).

Countermeasures?

75

How to protect against Spectre?

• Speculation barriers (fence)
• Load hardening
• Retpolines
• etc.

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?

☺ Full software solution
Variant-specific
Can be costly

☺ Better performance
☺ Comprehensive (but not always)
Adoption is harder

Fences to block speculative execution

77

• Branch is mispredicted to true

• fence stalls until branch is resolved

• Rollback before leak(mysecret)

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: fence

4: leak(x)
Transiently execution only until fence

Speculative Load Hardening

78

• Branch is mispredicted to true

• OOB access to mysecret

• x = 0 if branch is mispredicted

• leak(0)

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: x &= (idx < len)

4: leak(x)

79

Speculative Constant-Time (SCT)

80

Idea: Security in the constant-time observation mode
on a speculative semantics

Many flavors of microarchitectural semantics / ways to define security (see [1])

[1] Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., & Stefan, D. (2022, May). SoK: Practical foundations for

software Spectre defenses. SP’22

Why is that hard?

81

Challenge. Microarchitectural features are complex, often undocumented

Goals. Find suitable abstraction to reason about Spectre
• Capture all variants of Spectre
• Keep it simple

Problem. Formalize microarchitectural semantics with predictions
and out-of-order execution

First, how does my microarchitecture work?

82

Fetch/Decode Execute

• In-order
• Get instruction from

memory
• Decode instruction
• Fill reorder buffer (ROB)
• Predict branches

Retire

Simplified view

• Out-of-order
• Execute instructions from

ROB
• Depends on available

operands/execution units
• Rollback incorrect pred.

• In-order
• Commits oldest

instruction from ROB
• Write result in register

file/memory

Out-of-order execution

83

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

ROB
buf

Register
File r

Out-of-order execution

84

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch: false

ROB
buf

Register
File r

Out-of-order execution

85

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch: false

pc ← l2 @ l1ROB
buf

Register
File r

Out-of-order execution

86

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

ROB
buf

pc ← l2 @ l1

Register
File r

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

apl(buf, r)
=

r[pc↦l2]

Out-of-order execution

87

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

ROB
buf

Register
File r

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

pc ← l2

add a a i

pc ← l3

@ l1

@ 𝜀

@ 𝜀

Out-of-order execution

88

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

ROB
buf

Register
File r

Out-of-order execution

89

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 3

ROB
buf

Register
File r

Out-of-order execution

90

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 3

ROB
buf

Register
File r

apl(buf[..2], r)
=

r[pc↦l3]
[a ↦ ⊥]

Unresolved dep.
Stuck!

Out-of-order execution

91

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 1

ROB
buf

Register
File r

Out-of-order execution

92

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 1

ROB
buf

Register
File r

Reorder Buffer (ROB)

93

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 0

ROB
buf

Register
File r

Out-of-order execution

94

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 0

ROB
buf

Register
File r

Good prediction
Commit!

Out-of-order execution

95

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l4 @ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

execute 0

ROB
buf

Register
File r

Bad prediction
Rollback!

Out-of-order execution

96

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program

pc ← l4 @ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

retire

ROB
buf

Register
File r

Out-of-order execution

97

l1: beqz (i < len) l4

l2: add a a i

l3: load x a

l4: […]

Program
pc ↦ l4

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

retire

ROB
buf

Register
File r

Now, how do we formalize that?

98

Small asm
language

Configurations

Microarchitectural semantics

99

Semantics instrumented with observations and attacker directives

Attacker directives
• Model attacker ability to influence scheduling / predictions

Microarchitectural semantics

100

Semantics instrumented with observations and attacker directives

Constant-time observation mode (or leakage model)
• Program counter is observable (also commit and rollback)
• Memory addresses are observable

Example: add instruction

101

Example: branches

102

Define security

103

Observation’ (pc + mem)

Observation (pc + mem)d, public, secret

d, public, secret’

Now how do we verify SCT?

104

Modelling speculative semantics

105

Litmus tests (328 instrutions):

• Sequential semantics
→ 14 paths

• Speculative semantics
→ 37M paths

Modelling all transient paths explicitly is intractable
We need to be smarter

RelSE for architectural semantics

106106

if c

then foo

else bar

c

foo bar

𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

RelSE for Spectre-PHT (naive)

107107

Fork into 4 paths:
• 2 sequential paths
• + 2 extra transient path
On sequential and transient branches:

• No secret-dependent branches
• No secret-dependent memory accesses

c

foo foo bar bar

𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)

Speculation depth 𝛿
of the condition

if c

then foo

else bar

RelSE for Spectre-PHT (but let’s be smarter)

108108

c

foo bar

𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Speculation depth 𝛿
of the condition

Fork into 2 paths:
• 2 speculative paths = sequential ∨ transient
Add constraint to invalidate transient path
Can spare 2 paths at each branch!

if c

then foo

else bar

And concretely?

109

Verify/optimize Spectre protections

• Find gadgets in crypto [1,2]

• Find attacks combining Spectre variants [2,3]

• Insert Spectre protections smartly [4,5]

• Type system to protect crypto against Spectre [5]

• Find gadgets in the Linux kernel [6]

110

[1] Cauligi, Sunjay, et al. "Constant-time foundations for the new spectre era." PLDI’20

[2] Daniel, Lesly-Ann, Sébastien Bardin, and Tamara Rezk. "Hunting the haunter-efficient relational symbolic execution for

spectre with haunted relse." NDSS’ 21

[3] Fabian, Xaver, Marco Guarnieri, and Marco Patrignani. "Automatic Detection of Speculative Execution

Combinations." CCS’22

[4] Vassena, Marco, et al. "Automatically eliminating speculative leaks from cryptographic code with blade." POPL’21

[5] Shivakumar, Basavesh Ammanaghatta, et al. "Typing High-Speed Cryptography against Spectre v1." SP’23

[6] Johannesmeyer, Brian, et al. "Kasper: scanning for generalized transient execution gadgets in the linux kernel." NDSS’22

Recap

• Constant-Time is vulnerable against Spectre

• New programming model: SCT

111

Speculative ooo semantics

• Harder: need clever tricks to avoid complexity

• Yet, formal methods can help optimizing
protections and detect bugs!

Fill the gap between models and hardware

112

PART 3

Or how can we get sound hardware abstractions
that can be leveraged by software?

Actual
Microarchitectural

Leakage

Software Security
Property

(e.g. CT/SCT)

First problem: gap model <> HW

Second problem: many HW defenses

Second problem: how do we know they work?

• What guarantees?
• How can we program securely?

Software Verification
Secure Compilation

Leakage
Abstraction

Security
Property

Hardware Validation

HW/SW contracts for side-channel-free programs

Definition. Contracts specify which program execution a

side-channel adversary can distinguish

Goals.
• Capture security guarantees of hardware defenses

• Abstracts away hardware details

• Distribute security obligations between software/hardware

• Basis for secure programming

Contract world

Contract. labeled deterministic semantics

Define a trace of observation produced
during execution

Observer mode

• Sequential (seq)
• In-order execution

• Speculative (spec)
• Always mispredict branches

Execution mode

• Constant-time (ct)
• Control-flow + memory accesses

• Architectural observer (arch)
• Leaks values of loads

Hardware world

Hardware states

Hardware
semantics

Adversary Model

Hardware
observation trace

Projections of 𝜇

Close the gap HW <> contract

States are indistinguishable in contract semantics
Then they should be indistinguishable on HW

End-to-end guarantees

Program noninterference w.r.t to contract

Program security w.r.t. contract gives
HW-security on any HW satisfying the contract

And concretely?

122

Formally study HW countermeasures

• seq: disable all speculation

• loadDelay: delaying all
speculative loads

• tt: taint speculative load
values and delay
computations

Comparison of hardware countermeasures

124

• Track and protect secrets during speculative execution

• CT program in ISA semantics ⇒ secure on HW semantics

• Proof based on contract framework

125

• Test CPU against contracts
• Generate pairs of programs indistinguishable wrt. contract

• Execute them on CPU, check if they differ

• Rediscover existing Spectre variants

• Discover two new variants

• Zero-dividend-injection

• String-comparison overrun (repe, repne)

126

• Verify RTL processor designs against contract (ISA level)

• Applied on 3 RISC-V processors leaking CF, MEM, variable-time instr.

• Small in-order processors, no speculative execution

127

• Source code shouldn’t be tailored to specific HW guarantees

• Contract-Aware Secure COmpilation (CASCO)

• Compiler parametric wrt. HW/SW contract

• Make compilers aware of HW security guarantees

• Leverage these to produce secure code

• (Still theoretical)

Recap

• Gap between model and hardware

• Hard to reason about HW defenses

• Contract can help formalizing HW leakage and guarantees

• Strong formal basis to reduce the gap!

128

With already strong concrete results

Conclusion

• Concrete HW execution leak information

• HW optimizations do not care for security

• Formal methods can help

• Formalize observations & define secure programming models

• Find bugs / prove that SW is secure

• Still a gap between HW-models

• HW-SW contracts can help reduce it!

• Opens exciting research directions!

129

Backup

130

Credits

131

Icons made by bqlqn
from www.flaticon.com

Icons made by Freepik
from www.flaticon.com

From draw.io

Icons made by Becris
from www.flaticon.com

Icons made by scrip
from www.flaticon.com

https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.draw.io/
https://www.flaticon.com/authors/becris
https://www.flaticon.com/
https://www.flaticon.com/authors/scrip
https://www.flaticon.com/

Beyond self-composition:
Optimization for symbolic execution

132

Relational SE

133

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >

Sharing

Relational SE

134

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing

Relational SE

135

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing

Check CT!

Relational SE

136

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing

𝑐 = 𝑝 × 𝑠 − 48

Relational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48
∧ c = 0 ≠ 𝑐′ = 0

Sharing

Relational SE

137

foo(public p, secret s){

 c := p * s – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing

𝑐 = 𝑝 × 𝑠 − 48

SMT-SolverRelational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48

p = 6
s = 8 s’=1∧ c = 0 ≠ 𝑐′ = 0

Sharing

Relational SE

138

foo(public p, secret s){

 c := p – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >

Better approach: Relational SE

139

foo(public p, secret s){

 c := p – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >

Check CT!

Better approach: Relational SE

140

foo(public p, secret s){

 c := p – 48;

 if(c = 0) error();

 else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >

Track secrets and spare queries
Check CT!

Spectre-STL

141

Spectre-STL

142

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

Sequential execution

Spectre-STL

143

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

+

leak(p)

Sequential execution Transient Executions+

Spectre-STL

144

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

leak(s)leak(p)

Sequential execution Transient Executions+

Spectre-STL

145

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

leak(s)leak(p) leak(init_mem[a])

Sequential execution Transient Executions+

store a s

store a p

store b q

v = load a

RelSE for architectural semantics

146

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b

store a s

store a p

store b q

v = load a

RelSE for Spectre-PHT (naive)

147

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

At load instructions:
Fork execution for each
load/store interleaving

(e.g. Pitchfork)

v ↦ 𝛼

store a s

store a p

store b q

v = load a

RelSE for Spectre-STL (but let’s be smarter)

148

v ↦ p

v ↦ p v ↦ s

v ↦ 𝛼

+ 3 extra transient paths
1 sequential path

Redundant case

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

RelSE for Spectre-STL (but let’s be smarter)

149

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

	Slide 1: Formal methods to protect against Microarchitectural attacks
	Slide 2: Who am I?
	Slide 3: Outline
	Slide 4: Microarchitectural side-channel attacks
	Slide 5: What are side-channels?
	Slide 6: Programs manipulate secret data
	Slide 7: … that can be observed by attackers!
	Slide 8: … that can be observed by attackers!
	Slide 9: … that can be observed by attackers!
	Slide 10: … that can be observed by attackers!
	Slide 11: Concrete example
	Slide 12: Concrete example
	Slide 13: Concrete example
	Slide 14: Concrete example
	Slide 15: Concrete example
	Slide 16: Concrete example
	Slide 17: Concrete example
	Slide 18: Countermeasure
	Slide 19: How can secrets leak?
	Slide 20: How can secrets leak?
	Slide 21: How can secrets leak?
	Slide 22: How can secrets leak?
	Slide 23: How can secrets leak?
	Slide 24: How can secrets leak?
	Slide 25: Why does it matter?
	Slide 26: Solution? Constant-time programming!
	Slide 27: Constant-time is not easy to implement
	Slide 28: Compilers can break constant-time!
	Slide 29: Compilers can break constant-time!
	Slide 30
	Slide 31: Constant-time programming, formally?
	Slide 32: Constant-time programming, formally?
	Slide 33: System model
	Slide 34: System model
	Slide 35: What can we do with that?
	Slide 36: Constant-time programming, formally?
	Slide 37: Define side-channel observations
	Slide 38: Define side-channel observations
	Slide 39: Define side-channel observations
	Slide 40: Constant-time programming, formally?
	Slide 41: Define security
	Slide 42: Definition: Side-channel security
	Slide 43: Definition: Side-channel security
	Slide 44: Now how do we verify CT?
	Slide 45: Several approaches
	Slide 46: Several approaches
	Slide 47: Symbolic Execution [1,2]
	Slide 48: Symbolic Execution [1,2]
	Slide 49: Symbolic Execution [1,2]
	Slide 50: Symbolic Execution [1,2]
	Slide 51: Symbolic Execution [1,2]
	Slide 52: CT is a 2-hypersafety!
	Slide 53
	Slide 54: SE for constant-time via self-composition
	Slide 55: SE for constant-time via self-composition
	Slide 56: SE for constant-time via self-composition
	Slide 57: SE for constant-time via self-composition
	Slide 58: SE for constant-time via self-composition
	Slide 59: Beyond self-composition: Optimization for SE
	Slide 60: Beyond self-composition: Optimization for SE
	Slide 61: Formalization and theorems
	Slide 62: And concretely?
	Slide 63
	Slide 64: Preservation of constant-time by compilers
	Slide 65: LLVM-IR not equal Binary!
	Slide 66: Clang adds secret dependent memory access
	Slide 67: Recap
	Slide 68: Spectre Attacks
	Slide 69: Spectres are haunting our code
	Slide 70: Constant-time is vulnerable to Spectre
	Slide 71: Constant-time is vulnerable to Spectre
	Slide 72: Constant-time is vulnerable to Spectre
	Slide 73: Constant-time is vulnerable to Spectre
	Slide 74: Many variants of Spectre
	Slide 75: Countermeasures?
	Slide 76: How to protect against Spectre?
	Slide 77: Fences to block speculative execution
	Slide 78: Speculative Load Hardening
	Slide 79
	Slide 80: Speculative Constant-Time (SCT)
	Slide 81: Why is that hard?
	Slide 82: First, how does my microarchitecture work?
	Slide 83: Out-of-order execution
	Slide 84: Out-of-order execution
	Slide 85: Out-of-order execution
	Slide 86: Out-of-order execution
	Slide 87: Out-of-order execution
	Slide 88: Out-of-order execution
	Slide 89: Out-of-order execution
	Slide 90: Out-of-order execution
	Slide 91: Out-of-order execution
	Slide 92: Out-of-order execution
	Slide 93: Reorder Buffer (ROB)
	Slide 94: Out-of-order execution
	Slide 95: Out-of-order execution
	Slide 96: Out-of-order execution
	Slide 97: Out-of-order execution
	Slide 98: Now, how do we formalize that?
	Slide 99: Microarchitectural semantics
	Slide 100: Microarchitectural semantics
	Slide 101: Example: add instruction
	Slide 102: Example: branches
	Slide 103: Define security
	Slide 104: Now how do we verify SCT?
	Slide 105: Modelling speculative semantics
	Slide 106: RelSE for architectural semantics
	Slide 107: RelSE for Spectre-PHT (naive)
	Slide 108: RelSE for Spectre-PHT (but let’s be smarter)
	Slide 109: And concretely?
	Slide 110: Verify/optimize Spectre protections
	Slide 111: Recap
	Slide 112: Fill the gap between models and hardware
	Slide 113: First problem: gap model <> HW
	Slide 114: Second problem: many HW defenses
	Slide 115: Second problem: how do we know they work?
	Slide 116
	Slide 117: HW/SW contracts for side-channel-free programs
	Slide 118: Contract world
	Slide 119: Hardware world
	Slide 120: Close the gap HW <> contract
	Slide 121: End-to-end guarantees
	Slide 122: And concretely?
	Slide 123: Formally study HW countermeasures
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: Recap
	Slide 129: Conclusion
	Slide 130: Backup
	Slide 131: Credits
	Slide 132: Beyond self-composition: Optimization for symbolic execution
	Slide 133: Relational SE
	Slide 134: Relational SE
	Slide 135: Relational SE
	Slide 136: Relational SE
	Slide 137: Relational SE
	Slide 138: Relational SE
	Slide 139: Better approach: Relational SE
	Slide 140: Better approach: Relational SE
	Slide 141: Spectre-STL
	Slide 142: Spectre-STL
	Slide 143: Spectre-STL
	Slide 144: Spectre-STL
	Slide 145: Spectre-STL
	Slide 146: RelSE for architectural semantics
	Slide 147: RelSE for Spectre-PHT (naive)
	Slide 148: RelSE for Spectre-STL (but let’s be smarter)
	Slide 149: RelSE for Spectre-STL (but let’s be smarter)

