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Outline

1. Microarchitectural side-channel attacks
• What are microarchitectural side-channel attacks?

• How can formal methods help mitigating them?

2. Spectre attacks
• More hardware optimizations = more side-channels

• Model the microarchitecture with formal methods?

3. Mind the gap: model <> HW
• HW/SW contracts to the rescue!



Microarchitectural side-channel attacks
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PART 1

How formal methods can help you protect 
your secrets from the vagaries of time



What are side-channels?
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Programs manipulate secret data
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Critical software is prevalent:
• Secure communications
• Banking transactions
• Protect confidential data

Their security relies on cryptography:
• Mathematical guarantees
• Verified implementations (no bugs, functional)
• But what about their execution in the physical world?



… that can be observed by attackers!
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… that can be observed by attackers!
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… that can be observed by attackers!
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… that can be observed by attackers!
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!

Timing and microarchitectural attacks can be run remotely [1]

[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003



Concrete example
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bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

pin=????



Concrete example
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bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

pin=????



Concrete example

13

bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

0000 → 1s
1000 → 1s
2000 → 1s
3000 → 1s
4000 → 2s
5000 → 1s
…

pin=4???



Concrete example
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bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

pin=4???

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…



Concrete example
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bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

pin=4???

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…



Concrete example

16

bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

pin=43??

4000 → 2s
4100 → 2s
4200 → 2s
4300 → 3s
4400 → 2s
4500 → 2s
…



Concrete example
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bool check_pin(char* guess) {
  for (i=0; i<4; i++)
    if (guess[i] != pin[i])
      return false;
  return true;
}

pin = 4321

pin=4321
Attack

Complexity:
from 104

to 10 × 4



Countermeasure
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bool check_pin(char* guess) {
  good = true;
  for (i=0; i<4; i++)
    good &= guess[i] == pin[i];
  return good;
}

Make timing independent of secret
Remove secret-dependent branch!



if secret 

then foo() 

else bar()

How can secrets leak?

secret→

→ secret

Control-flow leaks
- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- …

trace

trace’

trace

trace’



How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache



How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache

Prepare cache



How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache Victim executes



How can secrets leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- …

x = tab[secret]

Cache

fast
slow
fast

Probe cache



How can secrets leak?

Variable time instructions leak
- divisions
- multiplication
- depends on microarchitecture
- …

x = mul y z

z = 0 →

→ z ≠ 0

z = 0 z ≠ 0



Why does it matter?

1996
2005



Solution? Constant-time programming!
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?

Already used in many cryptographic implementations

Write programs with:
• No secret-dependent branches
• No secret-dependent memory 

accesses



Constant-time is not easy to implement
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clang-3.0 –O0

Compilers can break constant-time!

28

clang-3.0 –O3



clang-3.0 –O0

Compilers can break constant-time!
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clang-3.0 –O3

Need to reason about CT at low-level (assembly)!
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Constant-time programming, formally?

31

Side-channel observations produced by program executions must 
be independent from secret input



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

How do we formalize program executions?



System model
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Small asm
language

Configurations



System model
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Expression evaluation

Instruction evaluation



A program is safe if for any

initial configuration          and number of steps     

if                          then          is not “bad”

What can we do with that?

35

Check safety property

Example: no runtime error, no division by 0



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

How do we define side-channel observations?



Define side-channel observations
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Semantics instrumented with observations

Constant-time observation mode (or leakage model)
• Program counter is observable
• Memory addresses are observable

Other observation modes are possible



Define side-channel observations
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Additions leak an atomic leakage

Loads leak their address



Define side-channel observations

39

Control-flow instruction leak their target



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

What does it mean to be independent from secret input?



Define security
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Define public/secrets

Partition state into public (low) / secret (high) 
registers and memory

Low-equivalence relation

Two configurations are low-equivalent 
if they have the same public values



Definition: Side-channel security
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Observation’ (pc + mem)

Observation (pc + mem)Public, Secret

Public, Secret’



Definition: Side-channel security
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Property relating 2 execution traces (2-hypersafety) [1]

[1] Clarkson, Michael R., and Fred B. Schneider. "Hyperproperties." Journal of Computer Security (2010)



Now how do we verify CT?
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Several approaches

Static

• Type systems

• Abstract interpretation

• Symbolic execution
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Dynamic

• Record and compare observations

• Statistical tests

• Fuzzing

• Dynamic symbolic execution



Several approaches

Static

• Type systems

• Abstract interpretation

• Symbolic execution
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Dynamic

• Record and compare observations

• Statistical tests

• Fuzzing

• Dynamic symbolic execution



Symbolic Execution [1,2]
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]

48

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

p ↦  𝑝
s ↦  𝑠

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]
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p ↦  𝑝
s ↦  𝑠
c ↦ 𝑝 × 𝑠 - 48

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}



Symbolic Execution [1,2]
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p ↦  𝑝
s ↦  𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula F(𝑝, 𝑠) 

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}



Symbolic Execution [1,2]
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p = 6
s = 8

Can error be reached?

p ↦  𝑝
s ↦  𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

SMT-Solver

Symbolic store Path predicate

Formula F(𝑝, 𝑠) 

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}



CT is a 2-hypersafety!
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Property relating 2 execution traces (2-hypersafety) [1]

Verification techniques/tools for safety do not apply
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Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program P;P’

Can re-use verification techniques/tools for safety!



SE for constant-time via self-composition
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Can c = 0 depend on s?



SE for constant-time via self-composition
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Formula F(𝑝, 𝑠) 

Symbolic Execution

𝑐 = 𝑝 × 𝑠 − 48



SE for constant-time via self-composition
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

F(𝑝, 𝑠, 𝑝′, 𝑠′) 

𝑐 = 𝑝 × 𝑠 − 48 ∧

𝑐′ = 𝑝′ × 𝑠′ − 48

Formula F(𝑝, 𝑠) 

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution

Self-composition

Self-composed
formula

Models 2 executions



SE for constant-time via self-composition

57

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

F(𝑝, 𝑠, 𝑝′, 𝑠′) 

𝑐 = 𝑝 × 𝑠 − 48 ∧

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠) 

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution

Self-composition

Self-composed
formula

= public Models 2 executions Can branch differ?



SE for constant-time via self-composition
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

SMT-Solver

p = 6, s = 8
p’ = 6, s’=1

F(𝑝, 𝑠, 𝑝′, 𝑠′) 

𝑐 = 𝑝 × 𝑠 − 48

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠) 

𝑐 = 𝑝 × 𝑠 − 48

Symbolic Execution



Beyond self-composition: Optimization for SE

Limitations:

• Whole formula is duplicated

• High number of queries to the solver
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F(𝑝, 𝑠, 𝑝′, 𝑠′)

Many techniques to optimize self-composed programs…
Parallel SC, Product programs, Lazy SC, etc.



Beyond self-composition: Optimization for SE
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• 2 execution in 1 SE instance
• Maximize sharing
• Spare queries

• RelSE for CT
• Optimization for binary-level



Formalization and theorems

61

Theorem: RelSE Correct for Bug-Finding

Theorem: Correct for Bounded-Verification

CT-query is satisfiable
at step n-1 in RelSE

No CT-query is satisfiable
for all n paths in RelSE

≠



And concretely?

62
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X86-32 / 64
RISC-V 32
ARMv7/AARCH64/AMD64

Binary SMT-Solver

SE/RelSE
Backward-bounded SE
Concrete interpretation

Loader for ELF/PE
Build & simplify formulas
[…]

IR

Analysis

Helpers

Boolector
Bitwuzla
z3, cvc4, yices

https://binsec.github.io/

Configuration
Concretize esp, .data,
canaries, …
Libc stubs

?

CT-analysis of cryptographic primitives

https://binsec.github.io/


11 compiler versions
• 5 versions of clang for x86

• 5 versions of gcc for x86

• 1 version of gcc for ARM

64

Preservation of constant-time by compilers

Optimization setups

• Optimization level O1 … O3

• Individual optimizations

• X86-cmov-converter, if-conversion

Fully reproducible build: Nix virtual env

Programs

• Analyze 34 small programs

• Total: 4148 binaries

Compile
&

Analyze with Binsec/Rel

https://github.com/binsec/rel_bench/tree
/main/properties_vs_compilers/ct
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LLVM-IR ≠ Binary!

Source

Binary

Backend passes can still
introduce violations!

LLVM-IR
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Clang adds secret dependent memory access

LLVM-IR
clang-9 –m32 –O3 –march=i686



Recap

• Constant-Time = de facto standard against microarchitectural SCA

• We can formalize CT as a 2-hypersafety

• There are tools to verify crypto primitives / find bugs

• We can find cool bugs introduced by compilers

67

LLVM analysis is not sufficient!



Spectre Attacks

68

PART 2

Or why is my code still leaking and 
what can I do about it?



Spectres are haunting our code
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• Exploit speculations in (almost all) processors

• Wrong speculation = transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in microarchitecture during 
transient execution & recover them with microarchitectural attacks

2018



Constant-time is vulnerable to Spectre
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char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Is this code secure?

Leaks x to the microarchitectural state
(e.g. load, or branch instr.)

Secure iff mysecret does
not flow to leak  



Constant-time is vulnerable to Spectre
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char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

ISA (sequential) execution

Conditional bound check ensures 
idx is in bounds

x only contains public data



Constant-time is vulnerable to Spectre

72

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Actual (speculative) execution

Branch condition can be 
(mis)predicted

Can I exploit that to 
leak(mysecret) ?



Constant-time is vulnerable to Spectre
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1. Trains branch predictor to predict true

2. Run victim with idx = len

• Branch is mispredicted to true

• OOB access to mysecret

• Transient execution leak(mysecret)

3. Extract mysecret from microarch.

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Many variants of Spectre

1. Misspeculation leads to transient execution

 Many sources of speculation

2. Transient execution leaks secret via side-channel

 Many side-channel vectors (timing, caches, buffers, etc.)
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Many sources of speculation ⇔ many variants of Spectre [1]
• Spectre-PHT: conditional branch
• Spectre-BTB: indirect branch
• Sprectre-RSB: return address
• Spectre-STL: memory dependencies
•  etc. (see [2] for the most recent list)

[1] Canella, Claudio, et al. "A systematic evaluation of transient execution attacks and defenses." USENIX Security (2019)

[2] Randal, Allison. "This is how you lose the transient execution war." arXiv (2023).



Countermeasures?
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How to protect against Spectre?

• Speculation barriers (fence)
• Load hardening
• Retpolines
• etc.

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?

☺ Full software solution
Variant-specific
Can be costly

☺ Better performance
☺ Comprehensive (but not always)
Adoption is harder



Fences to block speculative execution
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• Branch is mispredicted to true

• fence stalls until branch is resolved

• Rollback before leak(mysecret)

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      fence

4:      leak(x)
Transiently execution only until fence



Speculative Load Hardening
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• Branch is mispredicted to true

• OOB access to mysecret

• x = 0 if branch is mispredicted

• leak(0)

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      x &= (idx < len)

4:      leak(x)
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Speculative Constant-Time (SCT)
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Idea: Security in the constant-time observation mode
on a speculative semantics

Many flavors of microarchitectural semantics / ways to define security (see [1])

[1] Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., & Stefan, D. (2022, May). SoK: Practical foundations for 

software Spectre defenses. SP’22



Why is that hard?
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Challenge. Microarchitectural features are complex, often undocumented

Goals. Find suitable abstraction to reason about Spectre
• Capture all variants of Spectre
• Keep it simple

Problem. Formalize microarchitectural semantics with predictions 
and out-of-order execution



First, how does my microarchitecture work?
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Fetch/Decode Execute

• In-order
• Get instruction from 

memory
• Decode instruction
• Fill reorder buffer (ROB)
• Predict branches

Retire 

Simplified view

• Out-of-order
• Execute instructions from 

ROB
• Depends on available 

operands/execution units
• Rollback incorrect pred.

• In-order
• Commits oldest 

instruction from ROB
• Write result in register 

file/memory



Out-of-order execution

83

l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

ROB
buf

Register
File r



Out-of-order execution

84

l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch: false

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program
pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch: false

pc ← l2 @ l1ROB
buf

Register
File r



Out-of-order execution

86

l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

ROB
buf

pc ← l2 @ l1

Register
File r

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

apl(buf, r)
=

r[pc↦l2]



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

ROB
buf

Register
File r

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

pc ← l2

add a a i

pc ← l3

@ l1

@ 𝜀

@ 𝜀



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

fetch

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 3

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 3

ROB
buf

Register
File r

apl(buf[..2], r)
=

r[pc↦l3]
[a ↦ ⊥]

Unresolved dep.
Stuck!



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

add a a i

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 1

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 1

ROB
buf

Register
File r



Reorder Buffer (ROB)
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ l1

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 0

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l2

a ← 0xf0

pc ← l3

load x a

pc ← l4

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

@ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 4

Directive

execute 0

ROB
buf

Register
File r

Good prediction
Commit!



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l4 @ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

execute 0

ROB
buf

Register
File r

Bad prediction
Rollback!



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program

pc ← l4 @ 𝜀

pc ↦ l1

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

retire

ROB
buf

Register
File r



Out-of-order execution
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l1: beqz (i < len) l4

l2:   add a a i

l3:   load x a

l4: […]

Program
pc ↦ l4

a ↦ 0xf0

i ↦ 0

len ↦ 0

Directive

retire

ROB
buf

Register
File r



Now, how do we formalize that?
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Small asm
language

Configurations



Microarchitectural semantics
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Semantics instrumented with observations and attacker directives

Attacker directives
• Model attacker ability to influence scheduling / predictions



Microarchitectural semantics
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Semantics instrumented with observations and attacker directives

Constant-time observation mode (or leakage model)
• Program counter is observable (also commit and rollback)
• Memory addresses are observable



Example: add instruction
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Example: branches
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Define security
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Observation’ (pc + mem)

Observation (pc + mem)d, public, secret

d, public, secret’



Now how do we verify SCT?

104



Modelling speculative semantics
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Litmus tests (328 instrutions):

• Sequential semantics
→ 14 paths

• Speculative semantics
→ 37M paths

Modelling all transient paths explicitly is intractable
We need to be smarter



RelSE for architectural semantics
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if c

then foo

else bar

c

foo bar

𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐



RelSE for Spectre-PHT (naive)
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Fork into 4 paths:
• 2 sequential paths
• + 2 extra transient path
On sequential and transient branches:

• No secret-dependent branches
• No secret-dependent memory accesses

c

foo foo bar bar

𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)

Speculation depth 𝛿 
of the condition

if c

then foo

else bar



RelSE for Spectre-PHT (but let’s be smarter)
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c

foo bar

𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Speculation depth 𝛿 
of the condition

Fork into 2 paths:
• 2 speculative paths = sequential ∨ transient
Add constraint to invalidate transient path
Can spare 2 paths at each branch!

if c

then foo

else bar



And concretely?
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Verify/optimize Spectre protections

• Find gadgets in crypto [1,2]

• Find attacks combining Spectre variants [2,3]

• Insert Spectre protections smartly [4,5]

• Type system to protect crypto against Spectre [5]

• Find gadgets in the Linux kernel [6]
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[1] Cauligi, Sunjay, et al. "Constant-time foundations for the new spectre era." PLDI’20

[2] Daniel, Lesly-Ann, Sébastien Bardin, and Tamara Rezk. "Hunting the haunter-efficient relational symbolic execution for 

spectre with haunted relse." NDSS’ 21

[3] Fabian, Xaver, Marco Guarnieri, and Marco Patrignani. "Automatic Detection of Speculative Execution 

Combinations." CCS’22

[4] Vassena, Marco, et al. "Automatically eliminating speculative leaks from cryptographic code with blade." POPL’21

[5] Shivakumar, Basavesh Ammanaghatta, et al. "Typing High-Speed Cryptography against Spectre v1." SP’23

[6] Johannesmeyer, Brian, et al. "Kasper: scanning for generalized transient execution gadgets in the linux kernel." NDSS’22



Recap

• Constant-Time is vulnerable against Spectre

• New programming model: SCT

111

Speculative ooo semantics

• Harder: need clever tricks to avoid complexity

• Yet, formal methods can help optimizing 
protections and detect bugs!



Fill the gap between models and hardware

112

PART 3

Or how can we get sound hardware abstractions 
that can be leveraged by software?



Actual 
Microarchitectural 

Leakage

Software Security
Property

(e.g. CT/SCT)

First problem: gap model <> HW



Second problem: many HW defenses



Second problem: how do we know they work?

• What guarantees?
• How can we program securely?



Software Verification
Secure Compilation

Leakage
Abstraction

Security
Property

Hardware Validation



HW/SW contracts for side-channel-free programs

Definition. Contracts specify which program execution a

side-channel adversary can distinguish

Goals.
• Capture security guarantees of hardware defenses

• Abstracts away hardware details

• Distribute security obligations between software/hardware

• Basis for secure programming



Contract world

Contract. labeled deterministic semantics

Define a trace of observation produced 
during execution

Observer mode

• Sequential (seq)
• In-order execution

• Speculative (spec)
• Always mispredict branches

Execution mode

• Constant-time (ct)
• Control-flow + memory accesses

• Architectural observer (arch)
• Leaks values of loads



Hardware world

Hardware states

Hardware
semantics

Adversary Model

Hardware 
observation trace

Projections of 𝜇



Close the gap HW <> contract

States are indistinguishable in contract semantics 
Then they should be indistinguishable on HW



End-to-end guarantees

Program noninterference w.r.t to contract

Program security w.r.t. contract gives
HW-security on any HW satisfying the contract



And concretely?
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Formally study HW countermeasures

• seq: disable all speculation

• loadDelay: delaying all 
speculative loads

• tt: taint speculative load 
values and delay 
computations

Comparison of hardware countermeasures
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• Track and protect secrets during speculative execution

• CT program in ISA semantics ⇒ secure on HW semantics

• Proof based on contract framework
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• Test CPU against contracts
• Generate pairs of programs indistinguishable wrt. contract

• Execute them on CPU, check if they differ

• Rediscover existing Spectre variants

• Discover two new variants

• Zero-dividend-injection

• String-comparison overrun (repe, repne)
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• Verify RTL processor designs against contract (ISA level)

• Applied on 3 RISC-V processors leaking CF, MEM, variable-time instr.

• Small in-order processors, no speculative execution
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• Source code shouldn’t be tailored to specific HW guarantees

• Contract-Aware Secure COmpilation (CASCO)

• Compiler parametric wrt. HW/SW contract

• Make compilers aware of HW security guarantees

• Leverage these to produce secure code

• (Still theoretical)



Recap

• Gap between model and hardware

• Hard to reason about HW defenses

• Contract can help formalizing HW leakage and guarantees

• Strong formal basis to reduce the gap!

128

With already strong concrete results



Conclusion

• Concrete HW execution leak information

• HW optimizations do not care for security

• Formal methods can help

• Formalize observations & define secure programming models

• Find bugs / prove that SW is secure 

• Still a gap between HW-models

• HW-SW contracts can help reduce it!

• Opens exciting research directions!
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Backup
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Credits

131

Icons made by bqlqn
from  www.flaticon.com

Icons made by Freepik
from  www.flaticon.com

From draw.io

Icons made by Becris
from  www.flaticon.com

Icons made by scrip
from  www.flaticon.com

https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.draw.io/
https://www.flaticon.com/authors/becris
https://www.flaticon.com/
https://www.flaticon.com/authors/scrip
https://www.flaticon.com/


Beyond self-composition:
Optimization for symbolic execution
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Relational SE

133

foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >

Sharing 



Relational SE
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing 



Relational SE
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing 

Check CT!



Relational SE
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing 

𝑐 = 𝑝 × 𝑠 − 48

Relational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48
∧ c = 0 ≠ 𝑐′ = 0

Sharing 



Relational SE
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foo(public p, secret s){

  c := p * s – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing 

𝑐 = 𝑝 × 𝑠 − 48

SMT-SolverRelational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48

p = 6
s = 8   s’=1∧ c = 0 ≠ 𝑐′ = 0

Sharing 



Relational SE
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foo(public p, secret s){

  c := p – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >



Better approach: Relational SE
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foo(public p, secret s){

  c := p – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >

Check CT!



Better approach: Relational SE
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foo(public p, secret s){

  c := p – 48;

  if(c = 0) error();

  else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦ < 𝑝 >
s ↦ < 𝑠 | 𝑠′ >
c ↦ < 𝑝 − 48 >

Track secrets and spare queries 
Check CT!



Spectre-STL
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Spectre-STL
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leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

Sequential execution



Spectre-STL

143

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

+

leak(p)

Sequential execution Transient Executions+



Spectre-STL
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leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

leak(s)leak(p)

Sequential execution Transient Executions+



Spectre-STL
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leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

With s = secret / q and p = public / a ≠ b

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

leak(s)leak(p) leak(init_mem[a]) 

Sequential execution Transient Executions+



store a s

store a p

store b q

v = load a

RelSE for architectural semantics

146

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b



store a s

store a p

store b q

v = load a

RelSE for Spectre-PHT (naive)
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store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

At load instructions:
Fork execution for each 
load/store interleaving

(e.g. Pitchfork)

v ↦ 𝛼



store a s

store a p

store b q

v = load a

RelSE for Spectre-STL (but let’s be smarter)

148

v ↦ p

v ↦ p v ↦ s

v ↦ 𝛼

+ 3 extra transient paths
1 sequential path

Redundant case

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b



RelSE for Spectre-STL (but let’s be smarter)
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store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b
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