Hardware-Software Co-Design for End-to-End Security

How to get provable security from software down to hardware?

Crypto is everywhere...

ects that

by such

Goal: Hardware-software collaboration for security

PROSPECT: Provably Secure Speculation for the Constant-Time Policy

Lesly-Ann Daniel¹, Marton Bognar¹, Job Noorman¹,

Sébastien Bardin², Tamara Rezk³ and Frank Piessens¹

Architectural Mimicry: Innovative Instructions to Efficiently Address Control-Flow Leakage in Data-Oblivious Programs

Hans Winderix imec-DistriNet KU Leuven Marton Bognar imec-DistriNet KU Leuven

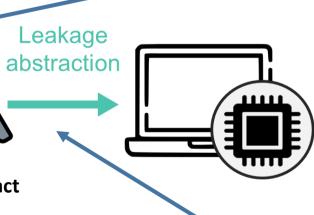
Details you need on those

Design flaws in processors from leading

big chip flaws

Job Noorman imec-DistriNet KU Leuven Lesly-Ann Daniel imec-DistriNet KU Leuven Frank Piessens imec-DistriNet KU Leuven

Remaining challenges


Explore new HW-SW contracts

- Secure balanced branches
- End-to-end provable crypto security
- Protect registers during speculation

Secure compilation

- Compiler-support for HW defense
- ⇒ Larger scale evaluation
- Secure compilation (Jasmin)
- ⇒ Provable end-to-end security

Hardware Validation

- Hardware fuzzing
- ⇒ Correctness vs. contract adherence
- ⇒ From Black-Box to White-Box
- Hardware validation