
Formal methods to protect against
Microarchitectural attacks

PEPR SécuritéςWinter school

Lesly-Ann Daniel ςKU Leuven

Who am I?

2

PhdStudent
ÅSymbolic Binary-Level Code Analysis

for Security

Å/9! [ƛǎǘ ϧ ¦ƴƛǾŜǊǎƛǘŞ /ƾǘŜ ŘΩ!ȊǳǊ

ÅSébastien Bardin and Tamara Rezk

Postdoc
Å Hardware /Software co-Designs for

Microarchitectural Security
Å KU Leuven (Belgium)
Å Frank Piessens

2018ς2021 2021

Outline

1. Microarchitectural side-channel attacks
ÅWhat are microarchitectural side-channel attacks?

ÅHow can formal methods help to protect against them?

2. Spectreattacks
ÅHardware optimizations can leak secrets!

ÅModel themicroarchitecture with formal methods?

3. Mind the gap: model <> HW
ÅHW/SW contracts to help bridging the gap

Microarchitectural side-channel attacks

4

PART 1

How formal methods can help you protect
your secrets from the vagaries of time

What are side-channels?

5

Programs manipulate secret data

6

Critical software is prevalent:
ÅSecure communications
ÅOnline banking
ÅProtect health data

Their security relies on cryptography:
ÅMathematical guarantees
ÅVerified implementations (no bugs, functional)
ÅBut what about their execution in the physical world?

Χ that can beobservedby attackers!

7

?

Χ that can beobservedby attackers!

8

?

Χ that can beobservedby attackers!

9

!

Χ that can beobservedby attackers!

10

!

Timing and microarchitectural attacks can be run remotely [1]

[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003

Concrete example

11

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=????

Concrete example

12

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

0000 Ҧ мǎ
1000 Ҧ мǎ
2000 Ҧ мǎ
3000 Ҧ мǎ
4000 Ҧ 2s
5000 Ҧ мǎ
Χ

pin=????

Concrete example

13

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

0000 Ҧ мǎ
1000 Ҧ мǎ
2000 Ҧ мǎ
3000 Ҧ мǎ
4000 Ҧ 2s
5000 Ҧ мǎ
Χ

pin= 4???

Concrete example

14

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4???

4000 Ҧ 2s
4100 Ҧ нǎ
4200 Ҧ нǎ
4300 Ҧ 3s
4400 Ҧ нǎ
4500 Ҧ нǎ
Χ

Concrete example

15

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4???

4000 Ҧ 2s
4100 Ҧ нǎ
4200 Ҧ нǎ
4300 Ҧ 3s
4400 Ҧ нǎ
4500 Ҧ нǎ
Χ

Concrete example

16

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4 3??

4000 Ҧ 2s
4100 Ҧ нǎ
4200 Ҧ нǎ
4300 Ҧ 3s
4400 Ҧ нǎ
4500 Ҧ нǎ
Χ

Concrete example

17

bool check_pin (char * guess) {
 for (i =0; i <4; i ++)
 if (guess[i] != pin[i])
 return false;
 return true;
}

pin = 4321

pin=4321
Attack

Complexity:
from ρπ
to ρπτ

Countermeasure

18

bool check_pin (char * guess) {
 good = true;
 for (i =0; i <4; i ++)
 good &= guess[i] == pin[i];
 return good;
}

Make timing independent of secret
Remove secret-dependent branch!

if secret

then foo()

else bar()

More generally, how can secret leak?

secretᴼ

ᴼ secret

Control-flow leaks
- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- Χ

trace

t raceƦ

trace

t raceƦ

More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[secret]

Cache

More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[secret]

Cache

Prepare cache

More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[secret]

Cache Victim executes

More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[secret]

Cache

fast
slow
fast

Probe cache

More generally, how can secret leak?

Variable time instructions leak
- divisions
- multiplication
- depends on microarchitecture
- Χ

x = mul y z

z = 0 ᴼ

ᴼ Ú ˯ ʣ

z = 0 Ú ˯ ʣ

Why does it matter?

1996
2005

Solution? Constant-time programming!

26

?

Already used in many cryptographic implementations

Write programs with:
ÅNo secret-dependent branches
ÅNo secret-dependent memory

accesses

Constant-time is not easy to implement

27

clang-3.0 ςO0

Compilers can break constant-time!

28

clang-3.0 ςO3

clang-3.0 ςO0

Compilers can break constant-time!

29

clang-3.0 ςO3

Need to reason about CT at low-level (assembly)!

How to formally define constant-time?

30

Constant-time programming, formally?

31

Side-channel observations produced by program executions must
be independent from secret input

Constant-time programming, formally?

32

Side-channel observations produced by program executions must
be independent from secret input

How do we formalize program executions?

System model

33

Small asm
language

Configurations

System model

34

Expression evaluation

Instruction evaluation

Constant-time programming, formally?

35

Side-channel observations produced by program executions must
be independent from secret input

How do we define side-channel observations?

Defineside-channelobservations

36

Semantics instrumented with observations

Constant-time observation mode (or leakage model)
Å Program counter is observable
Å Memory addresses are observable

Other observation modes are possible

Defineside-channelobservations

37

Additions leak an atomic leakage

Loads leak their address

Defineside-channelobservations

38

Control-flow instruction leak their target

Constant-time programming, formally?

39

Side-channel observations produced by program executions must
be independent from secret input

What does it mean to be independent from secret input?

Definesecurity

40

Define public/secrets

Partition state into public (low) / secret (high) registers and memory

Low-equivalence relation

Two configurations are low-equivalent
if they have the same public values

Definesecurity

41

hōǎŜǊǾŀǘƛƻƴΩ όǇŎ Ҍ ƳŜƳύ

Observation (pc + mem)Public, Secret

tǳōƭƛŎΣ {ŜŎǊŜǘΩ

Definesecurity

42

Property relating 2 execution traces (2-hypersafety)

Now how do we verify CT?

43

Several approaches

Static

ÅType systems

ÅAbstract interpretation

ÅSymbolic execution

44

Dynamic

ÅRecord and compare observations

ÅStatistical tests

ÅFuzzing

ÅDynamic symbolic execution

Several approaches

Static

ÅType systems

ÅAbstract interpretation

ÅSymbolic execution

45

Dynamic

ÅRecord and compare observations

ÅStatistical tests

ÅFuzzing

ÅDynamic symbolic execution

Symbolic Execution [1,2]

46

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error ();

 else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

47

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error ();

 else return s/c;

}

p ᵐ ὴ
s ᵐ ί

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

48

p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error ();

 else return s/c;

}

Symbolic Execution [1,2]

49

p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

c = 0

error ret

ὧ πὧ π

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula &ὴȟί

ὧ ὴ ί τψ᷈ὧ π

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error ();

 else return s/c;

}

Symbolic Execution [1,2]

50

p = 6
s = 8

Can error be reached?

p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

c = 0

error ret

ὧ πὧ π

SMT-Solver

Symbolic store Path predicate

Formula &ὴȟί

ὧ ὴ ί τψ᷈ὧ π

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error ();

 else return s/c;

}

CT isa 2-hypersafety!

51

Property relating 2 execution traces (2-hypersafety)

Verification techniques/tools for safety do not apply

52

Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program tΤtΩ

Can re-use verification techniques/tools for safety!

SE for constant-time via self-composition

53

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error();

 else return s/c;

}

Can c = 0 depend on s?

SE for constant-time via self-composition

54

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error();

 else return s/c;

}

Formula &ὴȟί

Symbolic Execution

ὧ ὴ ί τψ

SE for constant-time via self-composition

55

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error();

 else return s/c;

}

&ὴȟίȟὴȟίᴂ

ὧ ὴ ί τψ᷈

ὧᴂὴᴂίᴂ τψ

Formula &ὴȟί

ὧ ὴ ί τψ

Symbolic Execution

Self-composition

Self-composed
formula

Models 2 executions

SE for constant-time via self-composition

56

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error();

 else return s/c;

}

&ὴȟίȟὴȟίᴂ

ὧ ὴ ί τψ᷈

ὧᴂὴᴂίᴂ τψ
ὴ ὴᴂ᷈ Ã᷈ π ὧ π

Formula &ὴȟί

ὧ ὴ ί τψ

Symbolic Execution

Self-composition

Self-composed
formula

= public Models 2 executions Can branch differ?

SE for constant-time via self-composition

57

foo(public p, secret s){

 c := p * s ï 48;

 if (c = 0) error();

 else return s/c;

}

SMT-Solver

p = 6, s = 8
ǇΩ Ґ сΣ ǎΩҐм

&ὴȟίȟὴȟίᴂ

ὧ ὴ ί τψ

ὧᴂὴᴂίᴂ τψ
ὴ ὴᴂ᷈ Ã᷈ π ὧ π

Formula &ὴȟί

ὧ ὴ ί τψ

Symbolic Execution

Beyond self-composition: Optimization for SE

Limitations:

ÅWhole formula is duplicated

ÅHigh number of queries to the solver

58

&ὴȟίȟὴȟίᴂ

Many techniques to optimize self-ŎƻƳǇƻǎŜŘ ǇǊƻƎǊŀƳǎΧ
Parallel SC, Product programs, Lazy SC, etc.

Beyond self-composition: Optimization for SE

59

Å 2 executionin 1 SE instance
Å Maximizesharing
Å Sparequeries

Å RelSEfor CT
Å Optimizationfor binary-level

