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Outline

1. Microarchitectural side-channel attacks
ÅWhat are microarchitectural side-channel attacks?

ÅHow can formal methods help to protect against them?

2. Spectreattacks
ÅHardware optimizations can leak secrets!

ÅModel themicroarchitecture with formal methods?

3. Mind the gap: model <> HW
ÅHW/SW contracts to help bridging the gap



Microarchitectural side-channel attacks

4

PART 1

How formal methods can help you protect 
your secrets from the vagaries of time



What are side-channels?
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Programs manipulate secret data
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Critical software is prevalent:
ÅSecure communications
ÅOnline banking
ÅProtect health data

Their security relies on cryptography:
ÅMathematical guarantees
ÅVerified implementations (no bugs, functional)
ÅBut what about their execution in the physical world?



Χ that can beobservedby attackers!
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Χ that can beobservedby attackers!
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Timing and microarchitectural attacks can be run remotely [1]

[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003



Concrete example
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bool  check_pin ( char * guess) {
  for  ( i =0; i <4; i ++)
    if  (guess[ i ] != pin[ i ])
      return  false;
  return  true;
}

pin  = 4321

pin=????
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bool  check_pin ( char * guess) {
  for  ( i =0; i <4; i ++)
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Concrete example
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bool  check_pin ( char * guess) {
  for  ( i =0; i <4; i ++)
    if  (guess[ i ] != pin[ i ])
      return  false;
  return  true;
}

pin  = 4321

pin=4321
Attack

Complexity:
from ρπ
to ρπτ



Countermeasure
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bool  check_pin ( char * guess) {
  good = true;
  for  ( i =0; i <4; i ++)
    good &= guess[ i ] == pin[ i ];
  return  good;
}

Make timing independent of secret
Remove secret-dependent branch!



if  secret 

then foo() 

else  bar()

More generally, how can secret leak?

secretᴼ

ᴼ secret

Control-flow leaks
- end-to-end timing
- different resource consumption
- branch predictor state
- instruction cache
- instruction prefetcher
- micro-op cache
- Χ

trace

t raceƦ

trace

t raceƦ



More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[ secret ]

Cache
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Prepare cache



More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[ secret ]

Cache Victim executes



More generally, how can secret leak?

Memory accesses leak
- caches
- data pre-fetchers
- load/store dependencies
- Χ

x = tab[ secret ]

Cache

fast
slow
fast

Probe cache



More generally, how can secret leak?

Variable time instructions leak
- divisions
- multiplication
- depends on microarchitecture
- Χ

x = mul y z

z = 0 ᴼ

ᴼ Ú ˯ ʣ

z = 0 Ú ˯ ʣ



Why does it matter?

1996
2005



Solution? Constant-time programming!
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?

Already used in many cryptographic implementations

Write programs with:
ÅNo secret-dependent branches
ÅNo secret-dependent memory 

accesses



Constant-time is not easy to implement
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clang-3.0 ςO0

Compilers can break constant-time!
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clang-3.0 ςO3



clang-3.0 ςO0

Compilers can break constant-time!
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clang-3.0 ςO3

Need to reason about CT at low-level (assembly)!



How to formally define constant-time?
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Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

How do we formalize program executions?



System model

33

Small asm
language

Configurations



System model

34

Expression evaluation

Instruction evaluation



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

How do we define side-channel observations?



Defineside-channelobservations
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Semantics instrumented with observations

Constant-time observation mode (or leakage model)
Å Program counter is observable
Å Memory addresses are observable

Other observation modes are possible



Defineside-channelobservations
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Additions leak an atomic leakage

Loads leak their address



Defineside-channelobservations
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Control-flow instruction leak their target



Constant-time programming, formally?
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Side-channel observations produced by program executions must 
be independent from secret input

What does it mean to be independent from secret input?



Definesecurity
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Define public/secrets

Partition state into public (low) / secret (high) registers and memory

Low-equivalence relation

Two configurations are low-equivalent 
if they have the same public values



Definesecurity
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hōǎŜǊǾŀǘƛƻƴΩ όǇŎ Ҍ ƳŜƳύ

Observation (pc + mem)Public, Secret

tǳōƭƛŎΣ {ŜŎǊŜǘΩ



Definesecurity
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Property relating 2 execution traces (2-hypersafety)



Now how do we verify CT?

43



Several approaches

Static

ÅType systems

ÅAbstract interpretation

ÅSymbolic execution

44

Dynamic

ÅRecord and compare observations

ÅStatistical tests

ÅFuzzing

ÅDynamic symbolic execution



Several approaches

Static

ÅType systems

ÅAbstract interpretation

ÅSymbolic execution
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Dynamic

ÅRecord and compare observations

ÅStatistical tests

ÅFuzzing

ÅDynamic symbolic execution



Symbolic Execution [1,2]
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foo( public  p, secret  s){

  c := p * s ï 48;

  if (c = 0) error ();

  else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]
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foo( public  p, secret  s){

  c := p * s ï 48;

  if (c = 0) error ();

  else return s/c;

}

p ᵐ ὴ
s ᵐ ί

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]
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p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo( public  p, secret  s){

  c := p * s ï 48;

  if (c = 0) error ();

  else return s/c;

}



Symbolic Execution [1,2]
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p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

c = 0

error ret

ὧ πὧ π

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula &ὴȟί 

ὧ ὴ ί τψ᷈ὧ π

foo( public  p, secret  s){

  c := p * s ï 48;

  if (c = 0) error ();

  else return s/c;

}



Symbolic Execution [1,2]
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p = 6
s = 8

Can error be reached?

p ᵐ ὴ
s ᵐ ί
c ᵐὴ ί - τψ

c = 0

error ret

ὧ πὧ π

SMT-Solver

Symbolic store Path predicate

Formula &ὴȟί 

ὧ ὴ ί τψ᷈ὧ π

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo( public  p, secret  s){

  c := p * s ï 48;

  if (c = 0) error ();

  else return s/c;

}



CT isa 2-hypersafety!

51

Property relating 2 execution traces (2-hypersafety)

Verification techniques/tools for safety do not apply
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Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program tΤtΩ

Can re-use verification techniques/tools for safety!



SE for constant-time via self-composition
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foo( public  p, secret  s){

  c := p * s ï 48;

  if ( c = 0 ) error();

  else return s/c;

}

Can c = 0 depend on s?



SE for constant-time via self-composition
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foo( public  p, secret  s){

  c := p * s ï 48;

  if ( c = 0 ) error();

  else return s/c;

}

Formula &ὴȟί 

Symbolic Execution

ὧ ὴ ί τψ



SE for constant-time via self-composition
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foo( public  p, secret  s){

  c := p * s ï 48;

  if ( c = 0 ) error();

  else return s/c;

}

&ὴȟίȟὴȟίᴂ 

ὧ ὴ ί τψ᷈

ὧᴂὴᴂίᴂ τψ

Formula &ὴȟί 

ὧ ὴ ί τψ

Symbolic Execution

Self-composition

Self-composed
formula

Models 2 executions



SE for constant-time via self-composition
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foo( public  p, secret  s){

  c := p * s ï 48;

  if ( c = 0 ) error();

  else return s/c;

}

&ὴȟίȟὴȟίᴂ 

ὧ ὴ ί τψ᷈

ὧᴂὴᴂίᴂ τψ
ὴ ὴᴂ᷈ Ã᷈ π ὧ π

Formula &ὴȟί 

ὧ ὴ ί τψ

Symbolic Execution

Self-composition

Self-composed
formula

= public Models 2 executions Can branch differ?



SE for constant-time via self-composition
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foo( public  p, secret  s){

  c := p * s ï 48;

  if ( c = 0 ) error();

  else return s/c;

}

SMT-Solver

p = 6, s = 8
ǇΩ Ґ сΣ ǎΩҐм

&ὴȟίȟὴȟίᴂ 

ὧ ὴ ί τψ

ὧᴂὴᴂίᴂ τψ
ὴ ὴᴂ᷈ Ã᷈ π ὧ π

Formula &ὴȟί 

ὧ ὴ ί τψ

Symbolic Execution



Beyond self-composition: Optimization for SE

Limitations:

ÅWhole formula is duplicated

ÅHigh number of queries to the solver
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&ὴȟίȟὴȟίᴂ

Many techniques to optimize self-ŎƻƳǇƻǎŜŘ ǇǊƻƎǊŀƳǎΧ
Parallel SC, Product programs, Lazy SC, etc.



Beyond self-composition: Optimization for SE
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Å 2 executionin 1 SE instance
Å Maximizesharing
Å Sparequeries

Å RelSEfor CT
Å Optimizationfor binary-level


