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Outline

1. Microarchitectural side-channel attacks
e What are microarchitectural side-channel attacks?
* How can formal methods help to protect against them?

2. Spectre attacks
* Hardware optimizations can leak secrets!
* Model the microarchitecture with formal methods?

3. Mind the gap: model <> HW
« HW/SW contracts to help bridging the gap



PART 1

Microarchitectural side-channel attacks

How formal methods can help you protect
your secrets from the vagaries of time



What are side-channels?



Programs manipulate secret data

Critical software is prevalent:
* Secure communications

* Online banking

* Protect health data

Their security relies on cryptography:
 Mathematical guarantees

* \Verified implementations (no bugs, functional)
* But what about their execution in the physical world?



... that can be observed by attackers!




... that can be observed by attackers!
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... that can be observed by attackers!

Timing and microarchitectural attacks can be run remotely [1]
[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003 1o



Concrete example

(,Bool check pin(char* guess) {‘\
for (1=0; i<4; i++)
if (guess[i] != pin[i])
return false;
return true;

. Y,
[Bpin = 4321]




Concrete example

ool check_pin(char* guess) {\ 0000 = 1s
for (i=0; i<4; i++) 1 - 1s

if (guess[i] != pin[i]) 2 > 1s
return false; 3 > 1s

return true; 4 S 96

\J / 5000 = 1s

[Bpin =4321]
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Concrete example

ool check_pin(char* guess) {\ 000 = 2s
for (i=0; i<4; i++) 100 = 2s

if (guess[i] != pin[i]) 200 = 2s
return false; 300 = 3s

return true; 400 = 25

\} J 500 = 2s

[Bpin =4321]
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Concrete example

/bool check pin(char* guess) {\

for (1=0; i<4; i++)
if (guess[i] !'= pin[i]) Atthk. .
return false; Complexity:
from 10%

return true;

\} Y. to10 X 4
[Bpin = 4321]




Countermeasure

(,Bool check pin(char* guess) {ﬂ\\
good = true;
for (i=0; i<4; i++)

good &= guess[i] == pin[i];
return good;

. Y,

Make timing independent of secret
Remove secret-dependent branch!

18



More generally, how can secret leak?

4 )

if secret
Control-flow leaks

then foo() » trace - end-to-end timing

- different resource consumption
- branch predictor state

/ - instruction cache

- instruction prefetcher

- micro-op cache

else bar() > trace’

trace —> secret

03 ) trace’ = seeret




More generally, how can secret leak?

Memory accesses leak [ X = tab[secret] ]
- caches

- data pre-fetchers

- load/store dependencies Cache

L
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More generally, how can secret leak?

Memory accesses leak [ X = tab[secret] ]
- caches
- data pre-fetchers
- load/store dependencies Cache Probe cache
] fast

slow

fast




More generally, how can secret leak?

Variable time instructions leak [x =mul y z ]

- divisions

- multiplication ; = @/ 2 £+ 0
- depends on microarchitecture

C o




Why does it matter?

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems Cache-timing attacks on AES

Paul C. Kocher Daniel J. Bernstein *

Cryptography Research, Inc. _ o _
607 Market Street. 5th Floor. San Francisco. CA 94105. USA. Department of Mathematics, Statistics, and Computer Science (M/C 249)
E-mail: paul@cryptography. com. J The University of Illinois at Chicago
Chicago, IL 60607-7045

djb@Qcr.yp.to
Abstract. By carefully measuring the amount of time required to per-

form private key operations, attackers may be able to find fixed Diffie-
Hellman exponents, factor RSA keys, and break other cryptosystems.

Against a vulnerable system, the attack is computationally inexpensive Abstract. This paper demonstrates complete AES key recovery from
and often requires only known ciphertext. Actual systems are potentially known-plaintext timings of a network server on another computer. This
at risk, including cryptographic tokens, network-based cryptosystems, attack should be blamed on the AES design, not on the particular AES

and other applications where attackers can make reasonably accurate
timing measurements. Techniques for preventing the attack for RSA and
Diffie-Hellman are presented. Some cryptosystems will need to be re-
vised to protect against the attack, and new protocols and algorithms paper discusses several of the obstacles in detail.

may need to incorporate measures to prevent timing attacks.

1996

library used by the server; it is extremely difficult to write constant-time
high-speed AES software for common general-purpose computers. This



Solution? Constant-time programming!

Write programs with:

* No secret-dependent branches

* No secret-dependent memory
accesses

Already used in many cryptographic implementations

26



Constant-time is not easy to implement

uint32_t select(uint32_t x, uint32_t y, bool secret) {
(secret) X ;

Y5

uitnt32_t ct_select(uint32_t x, uint32_t y, bool secret) {
sighed b = - secret;
(x & b) | (y & ~b);

27



Compilers can break constant-time!

uint32_t (uitnt32_t x, uwnt32_t y, bool secret) {

public ct_select_u32_wv4 .

ct_select_u3Z_wvd4 proc near S 'Lg ned b e — S ec r‘e't ;

var_l4= dword ptr -14h .

var_D= byte ptr -0Dh ( X & b ) | ( y & Nb ) J

var_C= dword ptr —0Ch

var_ 8= dword ptr -8

arg_0= dword ptr 4

arg_4= dword ptr &

arg_8= byte ptr OCh

push esi public ct_select_u32_wv4
sub esp, 10h et_select_u32_v4 proc near
mowv al, [esp+lih+targ_8]

mowv ecx, [esp+ldhtarg_4] e —

mov edx, [esp+ldh+arg 0] C | a n g-3 o O _OO a.rg_ﬂ_ byte ptr 4

mow [esp+ld4h+var_8], edx arg_4= byte ptr &

mov [esp+ldh+var_C], ecx arg_8= byte ptr 0OCh

and al, 1

mov [esp+ldhtvar_D], al mowv al, [esptarg_£&]
mowv al, [esp+lih+var_ D] test al, al

and al, 1 jz short loc_804842F
MoOVIX ecx, al | |

mow edx, 0

5 E | clang-3.0 -03 *

mowv [esp+ldh+var_14], edx °

mowv ecx, [esp+ldh+tvar_8] E Iﬁ Iﬁ

and ecx, [esp+ldhtvar_14] lea eax, [esptarg_ 0]

mow edx, [esp+ldhdvar_C] mow eax, [eax] loc 804842F:
mov esi, [espt+ldht+var_14] retn lea eax, [esp+arg_4]
Xor esi, OFFFFFFFFh mowv eax, [eax]
and esi, edx retn

or esi, ecx

| - eax, esi ct_select_u32_ w4 endp
add esp, 10h

j=l=]=] esi

retn

ct_select_u32_v4 endp

28



Compilers can break constant-time!

uint32_t (uitnt32_t x, uwnt32_t y, bool secret) {

public ct_select_u32_wv4 .
ct_select_u3Z_wvd4 proc near S 'Lg ned b — — S ec r‘e't .
J
var_14= dword ptr -14h | .
var_D= byte ptr -0Dh ( X & b ) ( y & Nb ) J
var_C= dword ptr —0Ch
var_ 8= dword ptr -8
arg_0= dword ptr 4
arg_4= dword ptr &
arg_8= byte ptr OCh
push esi public ct_select_u32_wv4
sub esp, 10h et_select_u32_vw4 proc near
mowv al, [esp+lih+targ_8]
mev ecx, [esp+l4h+arg 4] | qm— | OO -
mov edx, [esp+ldh+arg 0] C a ng- o - a.rg_ﬂ_ byte ptr 4
mov [esp+ldh+var B8], edx arg_4= byte ptr &
mov [esp+ldh+var_C], ecx arg_8= byte ptr 0OCh
and al, 1
mov [esp+ldhtvar_D], al mowv al, [esptarg_£&]
mowv al, [esp+lih+var_ D] te=st al, al
and al, 1 jz short loc_804842F
MoOVIX ecx, al
mow edx, 0 I I
e clang-3.0 -03 v
mowv [esp+ldh+var_14], edx °
mowv ecx, [esp+ldh+tvar_8] E Iﬂ Iﬁ
and ecx, [esp+ldhtvar_14] lea eax, [esptarg_ 0]
mov edx, [esp+ldhdvar_C] mow eax, [eax] loc BO4B4Z2F:
mov esl, [esp+ldh+var 14] retn lea eax, [esptarg_4]
Xor esi, OFFFFFFFFh mev eax [eax]
and esi, edx retn !
or esi, ecx
| - eax, esi ct_select_u32_ w4 endp
add esp, 10h I
et d bout CT at low-level mbl
Need to reason about CT at low-level (assembly)! |
ct_select_u32_v4 endp

29



How to formally define constant-time?



Constant-time programming, formally?

Side-channel observations produced by program executions must
be independent from secret input

31



Constant-time programming, formally?

Side-channel observations produced by‘program executions‘must
be independent from secret i

How do we formalize program executions?

32



System model

Small asm (Values) v € V (Registers) x € R (Labels) ¢ € L
language (exp) = v | x
(inst) ::= add x (exp) (exp) | mul x (exp) (exp)
| 1load x (exp) | store (exp) (exp)
| beaz (exp) € | jup (exp)
(Program) P :L — (inst)

r:R—V (Register map)

H H p— y h
Configurations o = (r,m) where {m:V—>V (Memory)

33



System model

Expression evaluation |[e]]r,, =V
Instruction evaluation o— o
ADD

¢ = r(pc) P[{] = add x e; eo v = e, + [e2]- r' =r[x — v|[pc— £+ 1]

(m,r) — (m, ')

34



Constant-time programming, formally?

Side-channel observations‘produced by program executions must
1 beindependent from secret input

How do we define side-channel observations?

35



Define side-channel observations

Semantics instrumented with observations

o = o’ with o € O (Set of observations)

Constant-time observation mode (or leakage model)
 Program counter is observable
e Memory addresses are observable

O = {e, load a, store a, pc £}

Other observation modes are possible

36



Define side-channel observations

Additions leak an atomic leakage

ADD
¢ = r(pc) Pl{] = add x e; e v = [e1], + [e2]~ r' =r[x— v|[pc— £+ 1]

(m,r) — (m,r")

Loads leak their address

LOAD
¢ =r(pc) P|f] =load x € a = [e|, r’ = r[x — m(a)|[pc — £+ 1]

load a

(m, r) (m,r")

37



Define side-channel observations

Control-flow instruction leak their target

BEQZ-TAKEN
Plr(pc)] = beqz e /¢ le]» =0 1’ = r[pc— /]

(m, ) LGN (m,r")

BEQZ-NONTAKEN
P[r(pc)] = beqgz e ¢ le]- #0 ¢ =incr(pc) 1" = rlpc — /']

ot
{(m, ) LN (m, ")

38



Constant-time programming, formally?

Side-channel observations produced by program executions must
belindependent from secret input

What does it mean to be independent from secret input?

39



Define security

Define public/secrets

Partition state into public (low) / secret (high) registers and memory

. . /
Low-equivalence relation o ~j o

Two configurations are low-equivalent
if they have the same public values

40



Define security

Definition 1 (Security). A program P is secure, if and only if:
For any pair of initial configurations og, oy,
if oo ~1, o}y and o9 = "0y,
, then
ol =m0’ and 0 = o

(=)
Public, Secret ¢ !T()?ﬁl Observation (pc + mem)

Public, Secret’ ? @ I Observation’ (pc + mem)

—

41



Define security

Definition 1 (Security). A program P is secure, if and only if:
For any pair of initial configurations og, oy,
if o9 ~1, ob and og — "0y,
, then
oh “"o! and o = o

Property relating 2 execution traces (2-hypersafety)

42



Now how do we verity CT?



Several approaches

A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries

Antoine Geimer Mathéo Vergnolle Frédéric Recoules
Univ. Lille, CNRS, Inria Université Paris-Saclay, CEA, List Université Paris-Saclay, CEA, List
Univ. Rennes, CNRS, IRISA Gif-sur-Yvettes, France Gif-sur-Yvettes, France
Lille, France
Lesly-Ann Daniel Sébastien Bardin Clémentine Maurice
KU Leuven, imec-DistriNet Université Paris-Saclay, CEA, List Univ. Lille, CNRS, Inria
Leuven, Belgium Gif-sur-Yvettes, France Lille, France

Static Dynamic
* Type systems * Record and compare observations
e Abstract interpretation * Statistical tests
* Symbolic execution * Fuzzing

* Dynamic symbolic execution

44
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Static Dynamic
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Symbolic Execution [1,2]

foo (public p, secret s) {
c :=p * s — 48;
if(c = 0) error();

else return s/c;

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
46



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store
c :=p * s — 48;
if(c = 0) error(); ) IS = p
else return s/c; S H— S

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
47



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store
c :=p * s — 48; -
if(c = 0) error(); ) P p
else return s/c; S P S
/ c —»pXs-48

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
48



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store Path predicate
cC :=p * s — 48;

1if(c = 0) error(); ) p = p 0
else return s/c; S — S

c »pXs-48 c=0| [c#0

Can error be reached?

Formula F(p, s)
c=pXs —48Ac=0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
49




Symbolic Execution [1,2]

foo (public p, secret s) | Symbolic store Path predicate
c :=p * s — 48;

if(c = 0) error():; ) p = p 0
else return s/c; S — S

c »pXs-48 c=0| [c#0

error @
SMT-Solver ‘

J';:)p=6 20 Formula F(p, s)
s=8 r c=pXs —48Ac=0

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
50



CT is a 2-hypersafety!

Definition 1 (Security). A program P is secure, if and only if:
For any pair of initial configurations og, oy,
if o9 ~1, ob and og — "0y,
, then
oh “"o! and o = o

Property relating 2 execution traces (2-hypersafety)

Verification techniques/tools for safety do not apply

51



Secure Information Flow by Selt-Composition*

Gilles Barthe! Pedro R. D’Argenio?
Tamara Rezk (corresponding author) 3

Key idea: Turn a 2-hypersafety property of a program P
to a safety property of a self-composed program P;P’

Can re-use verification techniques/tools for safety!

52



SE for constant-time via self-composition

foo (public p, secret s) {
c :=p * s — 48;
if(c = 0) error();
else return s/c;

}

Can c = 0 depend on s?

53



SE for constant-time via self-composition

foo (public p, secret s) { Symbolic Execution

c :=p * s — 48;
if (¢ = 0) error():; ) Formula F(p' S)
else return s/c; c=pXs —48

}

54



SE for constant-time via self-composition

foo (public p, secret s) {
c :=p * s — 48;
if(c = 0) error():;
else return s/c;

Symbolic Execution

Formula F(p, s)
c=pXs —48

Self-composition

Self-composed
formula

F(p,s,p’,s")

c=pXs —48 A

¢ =p'Xs' —48
¢

|
Models 2 executions

55



SE for constant-time via self-composition

foo (public p, secret s) { Symbolic Execution
_ * g — 48;

c :=p
if (¢ = 0) error():; ) Formula F(p' S)
else return s/c; c=pXs —48

Self-composition

c=pXs —48 A

Self-composed

formula p=p'A ANe=0%c =0

F(p,s,p',s") / ¢ =p' xs —48 \
)
J \
= public Models 2 executions Can branch differ?

56




SE for constant-time via self-composition

foo(public p, secret s) { Symbolic Execution
cC :=p * s — 48;
if (¢ = 0) error():; ) Formula F(p' S)
else return s/c; c=pXs —48
}
F(p,s,p',s") SMT-Solver
, C=pXs —48 _ P _ O
=’ A ANc=0#c =0 /
p p CI — pl x Sl L 48

57



Beyond self-composition: Optimization for SE

Limitations:

* Whole formula is duplicated F(p,s, PI; S’)

* High number of queries to the solver

Many techniques to optimize self-composed programs...
Parallel SC, Product programs, Lazy SC, etc.

58



Beyond self-composition: Optimization for SE

Relational Symbolic Execution

Gian Pietro Farina*!, Stephen Chong'? and Marco Gaboardit!

LUniversity at Buffalo, SUNY
2Harvard University

BINSEC/REL: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level

Lesly-Ann Daniel*, Sébastien Bardin®, Tamara Rezk!

* CEA, List, Université Paris-Saclay, France
T INRIA Sophia-Antipolis, INDES Project, France

lesly-ann.daniel @cea.fr, sebastien.bardin @cea.fr, tamara.rezk @inria.fr

2 execution in 1 SE instance
Maximize sharing
Spare queries

RelSE for CT
Optimization for binary-level

59



Formalization and theorems

Theorem: RelSE Correct for Bug-Finding

cT is satisfiabl ,; / 00 =" 0n /
-query is satisfiable o0 ~1 Oh A . A O 0
at step n-1 in RelSE El 0"~ L %0 06 i> "5/ 7
T
Theorem: Correct for Bounded-Verification 0 5
TL
No CT-query is satisfiable \?{ Tn O_f A 90 In : Y
for all n paths in RelSE ; 0"~ L 0 / i> n ./ 0=0
UO On

60



And concretely?



BINSEC/REL: Efficient Relational Symbolic

Execution for Constant-Time at Binary-Level

Lesly-Ann Daniel*, Sébastien Bardin*, Tamara Rezk'

Binary Eifﬂj
X86-32 / 64 @
RISC-V 32
ARMv7/AARCH64/AMD64

Configuration
Concretize esp, .data,

canaries, ...
Libc stubs

Analysis @
SE/RelSE

Helpers Loader for ELF/PE
Build & simplify formulas

[...]

IR

01

nnBlnseC/Rel https://binsec.github.io/

‘ CT-analysis of cryptographic primitives ‘

SMT-Solver

Boolector )
Bitwuzla

23, cvc4, yices

9% 0O

62


https://binsec.github.io/

Preservation of constant-time by compilers

11 compiler versions Optimization setups

* 5versions of clang for x86 » Optimization level O1 ... O3

* 5 versions of gcc for x86 » Individual optimizations

* 1 version of gcc for ARM . X86-cmov-converter, if-conversion
Programs \\A‘ Compile

&
* Analyze 34 small programs
y Prog Analyze with Binsec/Rel

 Total: 4148 binaries

https://github. bi | _bench/t : : .
O ps://github.com/binsec/rel_bench/tree Fully reproducible build: Nix virtual env

/main/properties_vs_compilers/ct

63



public sorti
sort2 proc near

= — arg_0= dword ptr 4
arg_4= dword ptr & H
Binary

push esi

mow eax, [esp+ditarg 4]
mow edx, [eax]
*out? mov esi, [eax+4d]
"OUT L, lea ecx, [eax+4]
nar c; cmp edx, esi
z i /_[(}] < 1'J~|2[j_:|"| 4 jge short loc_g80483B2
out2[0] = (~c & in2[0]) (c & in2[1]); L1
out2[1] = (~c & in2[1]) (c & in2[0]);
return (in2[0] < in2[1]); }E.
mov esi, edx

'z

Ll it (=]

define 132 'jsnrnUBb nocapture %out2, 132* nocapture readr".q-

= load 132* %in2, align 4,

: loc_80483B3:
getelementptr inbounds 13/_‘+ sin2, 132 ! mov edx, [esp+ditarg 0]
load 132%* ¢ align 4, !tbaa !1 mov :g"];n:”

- B S — jge short loc_80483BF

2.4 SE.LE'I:t [ i3 o 137 51 Y

e~ vy wics weiygnr wy s emwd | ¥

%5 load 132*% %2 aln;]n 4 lthaa !1 [l il =
o0 T T ., - S, - mev esi, eecx

= select L3 i3

o = wetciumemepst Giwvuous toe suuce, 132 ‘

stnre 132 %7, 1 align 4, !tbaa !1 il el 5=
= Lload 132* %in align 4, !thaa !1
= load 132 align 4, !tbaa !1 loc_B0483ET: fesi]

o 4 mov ecx, [es
i.cm¥ E}Tllht 510 k d ” mov [edx+4], ecx
= ZeXT 11 5% 0o 13/ mov ecx, [eax]
e Backen Passes Can sti o onl e
setl al
introduce violations! movx  wax, a1
retn
sort2 endp 64




o0 3 O U R W N

o

Clang adds secret dependent memory access

1 sort2:
2 esi :
void sort2(i32* out, 132% in) { .
3 edi :
a®d = load in[0] A
al = load in[1] : odi -
a = select (a@ < al) a0 al 6 store

store a out[Q]
load in[1]
load in[@]
select (a@ < al) b1 bo

store Db ou

load (in+9)
load (in+4)

cmp esi edi

cmovle esi
edi
in+0

in+4

cmovge ecCX

load edx

LLVM-IR

clang-9 —-m32 -03 —march=i686
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Recap

* Constant-Time = de facto standard against microarchitectural SCA

For any pair of initial configurations oq, o},

. (o]
if o9 ~r o} and oo — "oy,
then
/
o
oy, —"ol,and o = o'

* We can formalize CT as a 2-hypersafety

* There are tools to verify crypto primitives / find bugs ﬁéﬁB | nSeC/Rel

* We can find cool bugs introduced by compilers A&_ﬁn

LLVM analysis is not sufficient!
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PART 2

Spectre Attacks

Or why is my code still leaking and
what can | do about it?
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Spectres are haunting our code

Spectre Attacks: Exploiting Speculative Execution

Paul Kocher!, Jann Horn?, Anders Fogh3, Daniel Genkin?,
Daniel Gruss®, Werner Haas®, Mike Hamburg7, Moritz Lipp5,

Stefan Mangard5, Thomas Prescher®, Michael Schwarz®, Yuval Yarom®

Exploit speculations in (almost all) processors
Wrong speculation = transient executions J}

Transient executions are reverted at architectural level '»)

But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in microarchitecture during
transient execution & recover them with microarchitectural attacks
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Constant-time is vulnerable to Spectre

Is this code secure?

/char‘ array|[len] \

char mysecret . .
y Leaks x to the microarchitectural state

1:| if (idx < len) (e.g. load, or branch instr.)

2: X = array[idx]

3: leak(x) ) Secure iff mysecret does
\ not flow to 1leak
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Constant-time is vulnerable to Spectre

ISA (sequential) execution

/char‘ array|[len] \
char mysecret Conditional bound check ensures

1: | if (idx < 1len) idx is in bounds

2: X = array[idx]
3 \ leak(x) / X only contains public data

70



Constant-time is vulnerable to Spectre

/;har array|[len] ‘\\
char mysecret
if (idx < 1len)
X = array[idx]

: \\» leak(x) 4//

Actual (speculative) execution
Branch condition can be
(mis)predicted

Can | exploit that to
leak(mysecret) :




Constant-time is vulnerable to Spectre

/;har array|[len] ‘\\
char mysecret
if (idx < 1len) |

X = array[idx]‘

: \\» leak(x) 4,/

1. Trains branch predictor to predict true
2. Runvictimwith idx = len
 Branch is mispredicted to true !
* Oobaccesstomysecret
* Transient execution leak(mysecret) 8

3. Extract mysecret from microarch.

%)
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Many variants of Spectre

1. Misspeculation leads to transient execution

/ Many sources of speculation

2. Transient execution leaks secret via side-channel

Many side-channel vectors (timing, caches, buffers, etc.)

Many sources of speculation & many variants of Spectre [1]
* Spectre-PHT: conditional branch
* Spectre-BTB: indirect branch
e Sprectre-RSB: return address
e Spectre-STL: memory dependencies
e etc. (see [2] for the most recent list)

[1] Canella, Claudio, et al. "A systematic evaluation of transient execution attacks and defenses." USENIX Security (2019)
[2] Randal, Allison. "This is how you lose the transient execution war." arXiv (2023).
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Countermeasures?
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How to protect against Spectre?

In Software? In Hardware?

e Speculation barriers (fence)
* Load hardening
* Retpolines

Microarchitectural partitioning,
Invisible speculation,
OISA, STT, SPT, ConTEXT, etc.

* etc.
© Full software solution © Better performance
® Variant-specific © Comprehensive (but not always)

® Can be costly ® Adoption is harder



Fences to block speculative execution

//ghar array[len] ‘\\

char mysecret
if (idx < len)
X = array[idx]

 Branch is mispredicted to true Q

e fence stalls until branch is resolved

* Rollback before 1leak(mysecret) Q

fence

:\\¥ leak(x) W,

A W N PR

Transiently execution only until fence
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Speculative Load Hardening

//Zhar array[len]
char mysecret .

if (idx < len)
X = array[idx] ‘
X &= (idx < len) |

'\ leak(x) ) + leak(e) @

Branch is mispredicted to true !
* Oob accesstomysecret

e X =0if branch is mispredicted

A W N PR

77



But where should | insert protections?
Don’t worry kid, formal methods can help you!
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Speculative Constant-Time (SCT)

Constant-Time Foundations for the New Spectre Era

Sunjay Cauligi’ Craig Disselkoen’ Klaus v. Gleissenthall®
Dean Tullsen’ Deian Stefan’ Tamara Rezk*  Gilles Barthe**

"UC San Diego, USA *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Idea: Security in the constant-time observation mode
on a speculative semantics

Many flavors of microarchitectural semantics / ways to define security (see [1])

[1] Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., & Stefan, D. (2022, May). SoK: Practical foundations for
software Spectre defenses. SP’22
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Why is that hard?

Problem. Formalize microarchitectural semantics with predictions
and out-of-order execution

Challenge. Microarchitectural features are complex, often undocumented

Goals. Find suitable abstraction to reason about Spectre
e (Capture all variants of Spectre
 Keep it simple
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First, how does my microarchitecture work?

Fetch/Decode

In-order

Get instruction from
memory

Decode instruction

Fill reorder buffer (ROB)
Predict branches

Execute )

Retire

Out-of-order .
Execute instructions from
ROB

Depends on available .
operands/execution units
Rollback incorrect pred.

Simplified view

In-order

Commits oldest
instruction from ROB
Write result in register
file/memory
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Out-of-order execution

Program Rei
egister c - 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° PN )
ROB
buf
—
Directive
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Out-of-order execution

Program Rei
egister c - 11
Gl: beqz (i < len) 14\ File r -
a - Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB
buf
fetch: false
—
Directive
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Out-of-order execution

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB pc « 12 @ 11
buf
fetch: false

—

Directive
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Out-of-order execution

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
len » 4
\14: [...] Yy apl(buf, r)
ROB | pc « 12 @ 11 )
buf r[pc—12]
fetch
—
Directive
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Out-of-order execution

Program

Gl: beqz (i < len) 14\

12: add a a 1
13: load x a

fetch
——————————————————————

Directive

Register
File r

pc » 11
a — Oxfo
i >0
len » 4

ROB
buf

pc « 12 @ 11
add aaili @ ¢
pc « 13 @ ¢
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Out-of-order execution

Program Rei
egister c - 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB | pc « 12 @ 11
buf | add aai @ ¢
fetch pc « 13 @ ¢
@ &

Directive pc « 14
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Out-of-order execution

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB pc « 12 @ 11
buf | add aai @ ¢
execute 3 pc « 13 @ ¢
@ ¢

Directive pc « 14
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Out-of-order execution

Program ﬁ
Register

c » 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
13: load x a 1= apl(bufl..2], r)
14. len » 4 —
N . ripc—13]
ROB | pc « 12 1// [@a = 1]

buf add a a i

_exeedte 3 pc « 13

Directive pc « 14

Unresolved dep.
Stuck!

@ ® ® ®
M M ™M M =
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Out-of-order execution

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB pc « 12 @ 11
buf | add aai @ ¢
execute 1 pc « 13 @
@ ¢

Directive pc « 14
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Out-of-order execution

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB | pc « 12 @ 11
buf | a « Oxfo @ ¢
execute 1 pc « 13 @
@ ¢

Directive pc « 14
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Reorder Buffer (ROB)

Program Rei
egister c 5 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » 4
\ ° eoe )
ROB | pc « 12 @ 11
buf | a « oxfo @ ¢
execute 0 pc « 13 @ ¢
@ ¢

Directive pc « 14

92



Out-of-order execution

Program ﬁ
Register

c » 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13 toad x a len » 4 Good prediction
\14: [...] Y Commit!
ROB pC «— 12 @ € 4./
buf | a « oxfo @ ¢
execute 0 pc « 13 @ ¢
Directive pc « 14 @ ¢
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Out-of-order execution

Program ﬁ
Register

c » 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13 toad x a len » © Bad prediction
14 [-] y Rollback!

/

ROB | pc « 14 @ € 4
buf

execute 0
—

Directive
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Out-of-order execution

Program Rei
egister c - 11
Gl: beqz (i < len) 14\ File r g
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » ©
\ ° PN )
ROB | pc « 14 @ ¢
buf
retire

—

Directive
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Out-of-order execution

Program Rei
egister c > 14
Gl: beqz (i < len) 14\ File r .
a — Oxfo
12: add a a 1 ,
1 - 0
13: load x a
140 .7 len » ©
\ ° PN )
ROB
buf
retire
—
Directive
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Now, how do we formalize that?

Small asm  (Values) v € V (Registers) x € R (Labels) ¢ € L
(exp) == v | x

language (inst) ::= add x (exp) (exp) | mul x (exp) (exp)
| 1oad x {(exp) | store (exp) (exp)
| beqz (exp) ¢ | jmp (exp) | fence
(Program) P :IL — (inst)
Configurations (r:R—V (Register map)
o= (r,m,buf) where {m:V -V (Memory)
Lbuf : (inst,op) list (Reorder buffer)
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Microarchitectural semantics

Semantics instrumented with observations and attacker directives

o ;1 . o€ O (Observation)
o — o with o
d d e D (Directive)

Attacker directives
* Model attacker ability to influence scheduling / predictions

D = {fetch, execute i, retire}
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Microarchitectural semantics

Semantics instrumented with observations and attacker directives

o ;1 . o€ O (Observation)
o — o with o
d d e D (Directive)

Constant-time observation mode (or leakage model)
 Program counter is observable (also commit and rollback)
* Memory addresses are observable

O = {e, load a, store a, pc £, commit, rollback}
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Example: add instruction

FETCH-ADD
¢ = [p<lapitbut.m P[] =add x e; ey buf' = buf - (add x e e5@Qg) - (pc + £ + 1Q¢)

(m: r, buf) ﬁ (m: r, bﬂf’)
etc

EXECUTE-ADD
lbuf| =1 fence & buf inst = add x e} ex@Q¢ r’ = apl(buf,r) v = [e1]y + [e2] inst’ = x + vQe¢

(m,r,buf - inst - buf') —— (m,r,buf - inst’ - buf’)

execute 1

RETIRE
inst = x < vQe r’=r[x— ]

(m,r,inst - buf") —— (m, 7", buf’)

retire
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Example: branches

FETCH-BRANCH-TAKEN
0 = [pcllapiouf.r) P[] =beqz e {' buf' = buf - (pc « £'QF)

(m,r,buf) > (m,r, buf’)

fetch true

EXECUTE-COMMIT-BRANCH-TAKEN
lbuf| =1 fence & buf inst = pc <+ ¢'Q/ P[¢] =beqz e ¥ Le]apicpug,ry =0 inst' = pc « {'Q¢

. r
commit-pc £

(m,r,buf - inst - buf’) > (m, 7, buf - inst’ - buf’)

execute 1

EXECUTE-ROLLBACK-BRANCH-TAKEN
lbuf| =i fence ¢ buf inst = pc < ¢'Q/ P[l] =beqz e V' lelapipur,ry # 0O inst’ = pc « £+ 1Q¢

. ollback-pc £+1 .
(m,r,buf - inst - buf') ———= T (m,r,buf - inst’)

execute 1
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Define security

Definition 2 (SCT). A program P is SCT, if and only if:
For any pair of initial configurations og, oy,
and for any set of directives d,
if o9 ~ 0y and oy %nan

then

/
0]

o, — "o and 0o =0

d

/

d, public, secret ¢ )
~L
d, public, secret’ ¢ )

—
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Now how do we verity SCT?



Modelling speculative semantics

Litmus tests (328 instrutions):

il

Ag

* Sequential semantics
— 14 paths

* Speculative semantics
— 37M paths

THAT ESCALATED QUICKLY

Modelling all transient paths explicitly is intractable
We need to be smarter
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RelSE for architectural semantics

if c
then foo
else bar

TANAC T N\ —C
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RelSE for Spectre-PHT (naive)

if c
then foo Fork into 4 paths:
else bar « 2 sequential paths
T e + 2 extra transient path
On sequential and transient branches:
C * No secret-dependent branches

* No secret-dependent memory accesses

TANAC T N\ —C

(e.g. KLEESpectre)

T N\-~C TAC

@ @ @ @ Speculation depth &

| of the condition
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RelSE for Spectre-PHT (but let’s be smarter)

if c

then foo

else bar .
Fork into 2 paths:

T 2 speculative paths = sequential V transient
Add constraint to invalidate transient path
Can spare 2 paths at each branch!
I8 T
£oo bar Speculation depth 6

/ of the condition

TAC : T N\-~C
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And concretely?
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Verify/optimize Spectre protections

* Find gadgets in crypto [1,2]

* Find attacks combining Spectre variants [2,3]

* Insert Spectre protections smartly [4,5]

* Type system to protect crypto against Spectre [5]
* Find gadgets in the Linux kernel [6]

[1] Cauligi, Sunjay, et al. "Constant-time foundations for the new spectre era." PLDI’20

[2] Daniel, Lesly-Ann, Sebastien Bardin, and Tamara Rezk. "Hunting the haunter-efficient relational symbolic execution for
spectre with haunted relse." NDSS’ 21

[3] Fabian, Xaver, Marco Guarnieri, and Marco Patrignani. "Automatic Detection of Speculative Execution

Combinations." CCS’22

[4] Vassena, Marco, et al. "Automatically eliminating speculative leaks from cryptographic code with blade." POPL’21

[5] Shivakumar, Basavesh Ammanaghatta, et al. "Typing High-Speed Cryptography against Spectre v1." SP’23

[6] Johannesmeyer, Brian, et al. "Kasper: scanning for generalized transient execution gadgets in the linux kernel." NDSS’22
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Recap

* Constant-Time is vulnerable against Spectre 4@5}

 New programming model: SCT 0 ol with ° cO (Ol.oser\.fation)
Speculative ooo semantics d deD (Directive)

* Harder: need clever tricks to avoid complexity e | ¥
' TR

* Yet, formal methods can help optimizing THAT ESCALATED QUICKLY
protections and detect bugs!
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PART 3

Fill the gap between models and hardware

Or how can we get sound hardware abstractions

MIND THE GAP
that can be leveraged by software?
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First problem: gap model <> HW

SIS,

Software Security Actual

Property Q\') Microarchitectural
R # Leakage

(e.g. CT/SCT)




Second problem: many HW defenses
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Second problem: how do we know they work?

. S YOUBUILTIAS
S HARDWARE/DEFENSE?

Mengjia Yan', J : i

C . Ll e B '
Ieanu : 3 — ‘&l‘ \ | né';'i}\“j! m’\‘ : - p Q0 _".',\Q
Ury, e D% e
Ndn»
G &uryy, J Sajj -
“Orgj, ;,E*":S@ga;;sb“’ﬂr 3 Comprehensive Protection
e o h, * What guarantees: 5 e
€ch cesse ata
fology, e How can we program securely? R
- rtem zha
Dfnu det: :u]a t' University of lllinois at Tel Aviv Unjrersity
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Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Kﬁpf*, Jan Reineke?, and Pepe Vila®
*IMDEA Software Institute "Microsoft Research *Saarland University

Security Leakage
Property — Abstraction
| g:
Software Verification Hardware Validation

Secure Compilation




HW/SW contracts for side-channel-free programs

Definition. Contracts specify which program execution a
side-channel adversary can distinguish

Goals.

* Capture security guarantees of hardware defenses
* Abstracts away hardware details

* Distribute security obligations between software/hardware
* Basis for secure programming



Contract world

L . L1 z
Contract. labeled deterministic semantics 4, L g, 2 g

Define a trace of observation produced
during execution

[[P]](O'o) =l1...l,

Observer mode Execution mode
e Constant-time (ct) * Sequential (seq)

* Control-flow + memory accesses * In-order execution
* Architectural observer (arch) * Speculative (spec)

e Leaks values of loads e Always mispredict branches



Hardware world

Hardware states Adversary Model
<O', [.L) Projections of u
Hardware Hardware
semantics observation trace

(o,u) = (o’ 1) {p}(o)




Close the gap HW <> contract

Definition 1 ({-} - |-]|). A hardware semantics { - |} satisfies
a contract | - | if, for all programs p and all initial architectural

states ,0", if [p[(o) = [p[(0”), then {p}(c) = {p[i(c).

States are indistinguishable in contract semantics
Then they should be indistinguishable on HW



End-to-end guarantees

Program noninterference w.r.t to contract

Definition 3 (p - NI(x,[-])). Program p is non-interferent
w.r.t. contract | -| and policy = if for all initial architectural
states 0,0": 0 ~, 0’ = [pl(o) = [pl(c’).

Program security w.r.t. contract gives
HW-security on any HW satisfying the contract



And concretely?
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Formally study HW countermeasures

* seq: disable all speculation

* loadDelay: delaying all
speculative loads

e tt: taint speculative load
values and delay
computations

[-].

R SR e

pc ﬂ G]oad[kﬂav

~ \\\
~ -

Spec/kﬂ J]

arch

Comparison of hardware countermeasures

spec \

‘ﬂ e



PROSPECT: Provably Secure Speculation for the Constant-Time Policy

Lesly-Ann Daniell, Marton Bognarl, Job N oormanl, Sébastien Bardinz, Tamara Rezk® and Frank Piessens!

limec-DistriNet, KU Leuven, 3001 Leuven, Belgium
2CEA, List, Université Paris Saclay, France
3INRIA, Université Cote d’ Azur, Sophia Antipolis, France

* Track and protect secrets during speculative execution
* CT program in ISA semantics = secure on HW semantics

* Proof based on contract framework

123



Revizor: Testing Black-Box CPUs against Speculation Contracts i

Olesit Olelsenkco Donsvort . Hide and Seek with Spectres: Etficient discovery of
ristof Fetzer Microsoft Research . . ] . .
speculative information leaks with random testing

TU Dresden Cambridge, UK

Dresden, Germany

Oleksii Oleksenko Marco Guarnieri Boris Kopf Mark Silberstein
Microsoft Research IMDEA Software Institute Microsoft Research Technion

* Test CPU against contracts

* Generate pairs of programs indistinguishable wrt. contract
e Execute them on CPU, check if they differ

* Rediscover existing Spectre variants

e Discover two new variants

e Zero-dividend-injection
e String-comparison overrun (repe, repne)
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Specification and Verification of Side-channel Security for
Open-source Processors via Leakage Contracts

Zilong Wang Gideon Mohr Klaus von Gleissenthall
IMDEA Software Institute Saarland University Vrije Universiteit Amsterdam
Jan Reineke Marco Guarnieri
Saarland University IMDEA Software Institute

* Verify RTL processor designs against contract (ISA level)
* Applied on 3 RISC-V processors leaking CF, MEM, variable-time instr.

* Small in-order processors, no speculative execution
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Contract-Aware Secure Compilation

Marco Guarnieri Marco Patrignani
IMDEA Software Institute Stanford University
CISPA Helmholz Center for Information Security

* Source code shouldn’t be tailored to specific HW guarantees

e Contract-Aware Secure COmpilation (CASCO)

* Compiler wrt. HW/SW contract
* Make compilers guarantees
* Leverage these to

e (Still theoretical)



Recap

* Gap between model and hardware

e Hard to reason about HW defenses

THAT'S CUTE..

e Contract can help formalizing HW leakage and guarantees

 Strong formal basis to reduce the gap!

With already strong concrete results
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Conclusion

e Concrete HW execution leak information L C{):

 HW optimizations do not care for security L

* Formal methods can help

* Formalize observations & define secure programming models
* Find bugs / prove that SW is secure

e Still a gap between HW-models
* HW-SW contracts can help reduce it!

e Opens exciting research directions!
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Backup



lcons made by Freepik
from www.flaticon.com I
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Icons made by scrip
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©

Icons made by bglgn L
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Beyond self-composition:
Optimization for symbolic execution
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Relational SE

foo (public p, secret s) {
c :=p * s — 48;
if(ec = 0) error():;
else return s/c;

>

Symbolic store :
Sharing A ‘
p »P<p> ‘/I

s PZ<s|s >
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Relational SE

foo (public p, secret s) {
c :=p * s — 48;
if(ec = 0) error():;
else return s/c;

}

>

Symbolic store :
Sharing A ‘
p »P<p> ‘/I

s PZ<s|s >

c P<pXs-48|p x s'-48 >
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Relational SE

foo (public p, secret s) { Symbolic store :
c :=p * s - 48; o < >A/|Shar|ng|é‘
if(c = 0) error(); ) p p ,
else\return s/c; s IS | S >

) c P<pXs-48|p x s'-48 >

\

‘Check CT! ‘
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Relational SE

foo (public p, secret s) { Symbolic store : ‘
C = p * s — 48; A/ISharmgé

=P
-
if(ec = 0) error():; ) p <p>

else return s/c; s IS | S’ >
) c P<pXs-48|p x s'-48 >

Relational formula: F(p, s, s")

c=pXs —48
c'=pxs —48

\‘Sharing 2 | 135

Ac=0=%c =0




Relational SE

foo (public p, secret s) { Symbolic store :
c :=p * s - 48; o < >A/|Shar|ng|é‘
if(c = 0) error(); ) P p ,
else return s/c; s PP S | S >

) c P<pXs-48|p x s'-48 >
Relational formula: F(p, s, s") SMT-Solver

4 p:6 %
c=pXs — A48 , (2 PR /
ANc=20 =0 s=8 s=1
¢’ =pXxs —48 - 7o ' *

\‘Sharing 5 ‘ .




Relational SE

foo (public p, secret s) {
c := p — 48;
if(c = 0) error();
else return s/c;

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

>

Symbolic store
p P<p>
s PZ<s|s >
c P<p-48 >

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
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Better approach: Relational SE

foo (public p, secret s) {
c := p — 48;
if(c = 0) error():;

else\iiturn s/c;
}

\

‘Check CT! ‘

>

Symbolic store
p Pp>
s PZ<s|s >
c »P<p-48 >

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
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Better approach: Relational SE

foo (public p, secret s) {
c := p — 48;
if(c = 0) error():;

else\iiturn s/c;
}

\

‘Check CT! ‘

>

Symbolic store
p Pp>
s PZ<s|s >
c »P<p-48 >

‘Track secrets and spare queries /b ‘

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
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Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b ¢
v = load 2
leak(v)

leak(p)

Withs =secret/qg andp =public/a # b
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Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution Transient Executions

store a s store a s
store a p store a p
store b g v = load a
v = load a store b ¢
leak(v) leak(v)
leak(p) leak(p)

Withs =secret/qg andp =public/a # b
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Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution Transient Executions

store a s store a s store a s
store a p store a p v = load a
store b g v = load a store a p
v = load 2 store b q store b g
leak(v) leak (V) leak(v)
leak(p) leak(p) leak(s)

W

Withs =secret/qg andp =public/a # b

143



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution Transient Executions

store a s store a s store a s v = load a

store a p store a p v = load a store a s

store b ¢ v = load a store a p store a p

v = load 2 store b q store b g store b ¢

leak(v) leak(v) leak (V) leak(v)
leak(p) leak(p) leak(s) leak(init_mem[a])

W

Withs =secret/qg andp =public/a # b
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RelSE for architectural semantics

store a s
store a p
store b g

v = load a

where a # b

1 sequential path

store & s

store a p
store b g

load =

V PP
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RelSE for Spectre-PHT (naive)

1 sequential path
+ 3 extra transient paths

store 2 s

Store a p store = s Store a S

t
store b g store a p store a p

v = load a

v = load a store b g store D q

At load instructions:
Fork execution for each

load =

store 2 s v = load a

v = load 2 | | store = s load/store interleaving
store a p store a p

store b g store b g (eg PitCthFk)

where a # b
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RelSE for Spectre-STL (but let’s be smarter)

1 sequential path
+ 3 extra transient paths

store 2 s

store a p store a2 s store a s
store b g store a p store a p
v = load a
v = load a store b g store b 9 Redundant case
load a

store a2 s v = load a

v = load a store a s

store a p store a p

store b g store b g

where a # b
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RelSE for Spectre-STL (but let’s be smarter)

1 speculative path

store 2 s

store 2 p ctore - < store a s
store b q store a p store -2 P HauntEd REISE.
v = load a store b * Cut redundant cases
v = load a | store b q 1 * Encode remaining ones in 1 path
load = . T
store a s v = load a symbohc:te
v = load a store a2 s * free booleans :801 :81
store a p store a p
store b 9 | [stere b a v b jte B, then a else (ite B, then s else p)

where a # b

‘ fo = false
‘ 1 = false
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