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Programs handle secret data...




... which can affect timing/microarchitecture




... and leak via side-channel attacks




Solution? Constant-time programming!




What can influence execution time/microarchitecture?

Control Flow

i1f secret

then foo /() (E)
else bar () @




What can influence execution time/microarchitecture?

1f secret X = buf[secret]

L
then foo () O Cache

else bar () @




What can influence execution time/microarchitecture?

1f secret X = buf[secret]

L
then foo () O Cache

else bar () @
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Solution? Constant-time programming!

Leaky instructions

e Control-Flow

* Memory accesses
e Variable-time instr.

e Full software countermeasure
* Plenty of analysis tools: ctgrind, Microwalk, Binsec/Rel

* De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.



Constant-time is not perfect

- /
Conservative model

Still vulnerable to Spectre Affects performance
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End-to-End Solution?

=T
In Software? In Hardware?

Constant-time Programming Microarchitectural partitioning,

Speculative Constant-time Invisible speculation,

OISA, STT, SPT, ConTEXT, etc.
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End-to-End Solution?

In Softwarq || HW / full SW solutions: Hardware?

e Partial countermeasures
e Performance

chitectural partitioning,
isible speculation,
OISA, STT, SPT, ConTEXT, etc.

Constant-time Pro
Speculative Consta
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End-to-End Solution?

1\
p— — @
Hardware-software co-design
Best performance/security tradeoff
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HW/SW Collaboration for End-to-End Security

PROSPECT: Provably Secure Speculation for the Constant-Time Policy
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Abstract

We propose PROSPECT, a generic formal processor model
providing provably secure speculation for the constant-time

¢ UGENIK

Abstract—The control flow of a program can often be observed
through side-channel attacks. Hence, when control flow de-
pends on secrets, attackers can learn information about these
secrets. Widely used software-based countermeasures ensure
that attacker-observable aspects of the control flow do not
depend on secrets, relying on techniques like dummy execution
(for balancing code) or conditional execution (for linearizing
code). In the current state-of-practice, the primitives to_i
ment these techniques have to be found in an existing
tion set architecture (ISA) that was not designed a p
provide them, leading to performance, security, and po
issues. To counter these issues, this paper proposes ligh
hardware extensions for supporting these techniqué

At iy

ECURITY SYMPOGlIM

work. As a result, our security proof covers all known Spectre
attacks, including load value injection (LVI) attacks.

|
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Architectural Mimicry: Innovative Instructions to Efficiently Address
Control-Flow Leakage in Data-Oblivious Programs

Frank Piessens
imec-DistriNet
KU Leuven

Lesly-Ann Daniel
imec-DistriNet
KU Leuven

benefits compared to other approaches [5], [6]. Second,
linearization [7]-[10] ensures that control flow does not
depend on program secrets at all.

Balancing and linearization are important ingredients in
state-of-practice software-based countermeasures (such as
constant-time programming [11]), as well as in recent re-
search prototypes [5]-[7], [10], [12]. They are based on tech-
niques like dummy execution (i.e., using architectural no-ops

45th IEEE Symposium on
Security and Privacy
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Constant-time is vulnerable to Spectre

/;mar array|[len] <\\

char mysecret
1f (1dx < len) {jyx
X = array|[idx] ‘?

3: leak (x)
\ J
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Constant-time is vulnerable to Spectre

/Zmar array|[len]
char mysecret
1f (1dx < len)

X = array|[idx]

3: leak (x)
\

~

/

Consider idx = len

Predict branch taken Q
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Constant-time is vulnerable to Spectre

/Zmar array|[len]
char mysecret
1f (1dx < len)

X = array|[idx]

3: leak (x)
\

~

/

Consider idx = len

Predict branch taken Q

X = mysecret

Leak mysecret to
microarchitecture!

X

18



How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Caul.igi* Craig Disgelkoen* Klaus v. Gleissenthall’
Dean Tullsen’ Deian Stefan’ Tamara Rezk* Gilles Barthe**

"UC San Diego, USA  *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Speculative constant-time
e Hard to reason about

* New speculation mechanisms?

19



We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
Q Hardware shall not speculatively leak secrets

fﬁ But still be efficient and enable speculation

2" Hardware defense:
‘, Secure speculation for constant-time!

20



Hardware Secrecy Tracking

e Label secrets * Track security labels

« Constant-time program e Secrets do not speculatively

—— | flow to insecure instructions

ConTEXT: A Generic Approach for Mitigating .@
S

Spectre pectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
Michael Schwarz!, Moritz Lipp!, Claudio Canellal, Robert Schilling!-2, Florian Kdrgl1 Daniel Grus ]acob FUStOS Farzad Farshchi Heechul Yun
!Graz University of Technology 2Kno Mnmens Ot University of Kansas University of Kansas

Speculatlve Privacy Tracklng (SPT): Leaklng Information From.
Speculative Execution Without Compromising Privacy

Rutvik Choudhary Jiyong Yu
UIUC, USA UIUC, USA
Christopher W. Fletcher Adam Morrison

UIUC, USA Tel Aviv University, Israel 21




lllustration with Spectre-v1

/;har array/|[len] \\
char mysecret
l: 1 1f (1dx < len)

X = array[i1dx]

3 leak (x)
\_ " J

Consider idx = len
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret
l: ] 1£f (1dx < len)

X = array[i1dx]

3: leak (x)
\_ - Y

Consider idx = len
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret Speculative execution !
l: ] 1f (1dx < len)

X = array[i1dx]

3 leak (x)
\_ " J

Consider idx = len
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lllustration with Spectre-v1

secret char mysecret Speculative execution !
1:| 1f (1dx < len) X = mysecret:secret
: X = array[i1dx]
3: \¥ leak (x) ,/

Consider idx = len
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets
secret char mysecret « |
1: | if (idx < len) ‘
x = array[idx] J

4

3: leak (x)
\_

Consider idx = len

Speculative execution

X = mysecret:secret

Speculative execution + secret

x hot forwarded to 1eak
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How do | know that my defense works?

SYOUBUILT/AR
AHARDWARE/DEFENSE?

THAT'S GUTE...




How do | know that my defense works?

{ARDWARE/DEFENSES |
7 - 4 T,,~.n",' gLl l*&—* m

Hardware-Software Contracts for
ey Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute "Microsoft Research *Saarland University

=
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Challenges

Adapt HW/SW contract framework to account for

 All existing speculation mechanisms (Spectre, LVI)
e Futuristic speculation mechanisms (value prediction)

* Declassification
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Our contributions

" ProSpeCT: Formal processor model with HST
* Proof: constant-time programs do not leak secrets

* Allows for declassification
* Generic: all Spectre variants / LVI ¢

= First to consider (Load) Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

" Implementation in a RISC-V microarchitecture
* First synthesizable implementation
e Evaluation: hardware cost, performance, annotations
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ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context , ,
_ _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

31



ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context , ,
_ _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

Security proof

— Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

32



Load Prediction: Rollback correct executions?

4 )

secret char mysecret

1:] x = load mysecret

2:1l v =x + 4
G J
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Load Prediction: Rollback correct executions?

(
secret char mysecret ‘]

Predict x=0 !

2:1 v =x + 4 ‘ _
L ) Compute vy =4

1:] x = load mysecret
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Load Prediction: Rollback correct executions?

(
secret char mysecret ]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute y =4

\_

yes Commit and goto line 3
Resolve prediction? @cre@
Rollback to line 1

NO

Implicit resolution-based channel!
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Load Prediction: Rollback correct executions?

(
secret char mysecret ]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute y =4

\_

yes Rollback to line 1
Resolve prediction? @cre@
Rollback to line 1

NO

Solution: always rollback when value is secret

36



Implementation

ARTIFACT ARTIFACT ARTIFACT
EVALUATED | EVALUATED | EVALUATED

, , € oenix. | gpsenix. | €posni.
Prototype RISC-V implementation

On top of Proteus modular RISC-V processor
* Branch target prediction
* Conservative approach

» 2 secret regions defined by CSRs

github.com/proteus-core/prospect

37


https://github.com/proteus-core/prospect

Evaluation

/ Hardware Cost

Synthesized on FPGA
 LUTs: +17%

* Registers: +6%

e Critical path: +2%

\_

~

/

/ Annotation burden

* 4 primitives (HACL*)

* Annotate secret

* Ensure no secrets spilled

» Stack publicin 3/4 cases

kﬁlh / primitive

~

/
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Evaluation

Performance overhead (benchmark from [1])

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%
Conservative (All) 10% 25% 36% 45%
-
No overhead in software for constant-time code
when secrets are precisely annotated
.

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism

against Spectre Attacks”. In: DAC. 2019 39



Summary

|_=‘| Software informs hardware about secrets

o

Strong security guarantees

End-to-end security for constant-time programs

0

Low overhead

No software overhead for constant-time code

40



Architectural Mimicry: Innovative Instructions to Efficiently Address
Control-Flow Leakage in Data-Oblivious Programs

Hans Winderix Marton Bognar Job Noorman Lesly-Ann Daniel Frank Piessens
imec-DistriNet imec-DistriNet imec-DistriNet imec-DistriNet imec-DistriNet
KU Leuven KU Leuven KU Leuven KU Leuven KU Leuven




Secrets can leak via control-flow

\

if (secret)
add v a a
add v v 8
else
add v a 4

\_ v
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Secrets can leak via control-flow

if (secret)e A
add v a a
add v v 8
else
add v a 4
\ J

@

Directly leak condition to
branch predictor

@ Conservative leakage model / high-end platforms

2
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Secrets can leak via control-flow

(if (secret)e A @ Directly leak condition to

add v a a branch predictor

add v v 8

else . N
Indirectly leak condition

add v a2 4 <«
via # target leakage

Liberal leakage model / small microcontrollers

\_
@ Conservative leakage model / high-end platforms



Control-Flow Leakage Mitigations?

C =
add
add

add
V =

(secret # 0)
vl a a

vl vl 8

v2 a 4

select ¢ vl v2

OL0.

if (secret)
add v
add v
else
add v
add v

< o

< Q

0 L

o H

O
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Control-Flow Leakage Mitigations?

c = (secret # 0)
add vl a a

add vl vl 8

add v2 a 4

v = select ¢ vl v2

OL0.

if (secret)
add v a a
add v v 8
else
add v a 4
add v v ©

O

— Portability (microcontrollers # servers)

Issues

— Performance (extra instructions, registers)

— Security (no security guarantees)

46



~N

Hardware support and small ISA extension
Efficient and principled

control-flow linearization and balancing

v

— Portability: linearization @+@ and balancing @

— Performance: improve over std. linearization/balancing

— Security: leakage contract drives secure software development

47



Contributions

* Mimic Execution

* HW primitive for mimicking instructions
e Architectural Mimicry (AMi)

* Instructions to control mimic execution

* Programming models

* Secure/correct balancing/linearization with AMi

* Implementation in RISC-V

* Evaluation: hardware cost, performance

48



Mimic execution

Qualifiers

Standard

Mimic

.

4 )
( ® 2 processor modes
)& standard / mimic
\ as Y.
4 )
5 qualifiers

to control mimic execution

J

Activating a.inst
Standard s.inst
Mimic m.inst
inst

Persistent p.

Ghost g.inst

activate mimic mode

v
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AMi for Linearization (9

Insecure Code

(bnz secret end\ (a.bnz secret end A
load v a load v a
add v v 1 add v v 1
kend: ) kend: )

50



AMi for Linearization (9

Insecure Code

\
bnz secret end | jmp secret+o da.bnz secret end | jmp
load v a Load a load v a 30F| Load a
add v v 1 | add add v v 1 {of| add

end: ) kend: Y

secret = 0 secret = 0
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AMi for Linearization (9

Insecure Code

\
bnz secret end jmp secret+0 d
load v a Load a

a.bnz secret end | jmp
load v a 30E| Load a

add v v 1 | add add v v 1 3of| add
end: ) \_&nd: T)
secret = © secret = ©
bnz secret end‘\ Jjmp secret+0 (ra.bnz secret end A Jjmp
load v a <:: load v a \ Load a
add v v 1 add v v 1 add
end: Y \¥end:

v hot modified

secret # © secret # 0
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AMi for Linearization (9

Insecure Code

bnz secret end h jmp secret+0 d
load v a Load a

a.bnz secret end | jmp
load v a 30E| Load a

add v v 1 | gdd add v v 1 4#5 add
end: :
) * kend. Y o
secret = © secret = © T
bnz secret end‘\ Jjmp secret+6 (ra.bnz secret end » Jmp
load v a <:: load v a \
add v v 1 add v v 1
end: Y \¥end:

secret # © cecret = 0 v not modified
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Maintain Correctness?

a.bnz c end Correctness:
add v v 1
add a a 4 No effect on live state
p.store v a in mimic mode

\end

54



Maintain Correctness?

[a.bnz C end Correctness:
add v v 1 @
add a a 4 ‘@ No effect on live state
p.store v a {0} in mimic mode
\end

Breaks correctness

C # 0
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Maintain Correctness?

/ra.bnz C end

Correctness:
add v v 1 %&
add a a 4 ‘@ No effect on live state
g.load t a {Of in mimic mode
p.store t a {0}
\\end
Correct

C # 0
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Enforce Security?

G.bnz Cc end Security:
add v v 1
add a a 4 Leakage independent
g.load t a of processor mode
p.store t a

Qnd
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Enforce Security?

/;.bnz C end
add v v 1
add a a 4
g.load t a

\End

p.store t a:

a = 0 C #

0

add
add
Load ©
store ©

/;.bnz C end

add v v 1 -é
add a a 4 {0
g.load t a 18
p.store t a{O

\End

a = o0 cC =0

Security violation!

10k | add
J0E | add

Load 4
store 4
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Enforce Security?

/;.bnz C end
add v v 1
p.add a a 4
g.load t a

\End

p.store t a {of

&) | add

{0F | add
{0F | Load 4
J0E | store 4

/

a = 0 C #

0
Secure

/;.bnz C end

add v v 1

p.add a a 4:

g.load t a

30 w]£[a]:

p.store t a:

\End

a = o0 cC =0

+correct assuming a, t are not live

10k | add
e |add

Load 4
store 4
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Formalization

* Operational ISA semantics for AMi
* Instrumented with leakage

* Definition well-behaved activating regions
* Proof (under conditions) activating regions are well-behaved
* Nested and recursive activation

* Definitions correct / secure programming model
* Linearization
e Balancing

60



Implementation

Prototype 32-bit RISC-V implementation on Proteus

e |n order & out-of-order

Mimic instr = no update register file

Mode-independent stalling
N

Constant-time branch (no prediction)

2-bit for instruction qualifiers + 3 CSR for store processor mode

61



Evaluation

T oencmare W Rens

11 programs from [1] * Security: tests

4 configurations: * Hardware: max 26% LUTS/FF, 0% CP
Balancing (B) with/wo AMi * Binary size: +19% — +0% (L)*
Linearization (L) Molnar/AMi * Performance: +48% — +19% (L)*

*No change for balancing

[1] H. Winderix, J. T. Muhlberg, and F. Piessens, “Compiler-assisted hardening of
embedded software against interrupt latency side-channel attacks,” in EuroS&P, 2021. 62



Summary

|_=§| Principled linearization and balancing

o

Security-oriented ISA extension

Can be leveraged to write side-channels free sw

Accelerate CT code
-60% overhead of linearized code
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A step back

RISC-V open standard ISA

y
I 4
y ‘
4 3 y
y
% 4
9

RISC-V

- HW-SW co-design for security

" Proteus: extensible RISC-V processor

= Security extensions
— ProSpeCT
~ AMi
— CHERI

64



Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Képf*, Jan Reineke*, and Pepe Vila®
"Microsoft Research *Saarland University

*IMDEA Software Institute

Software Verification
Secure Compilation

%

Hardware Validation




How to ease adoption of HW-SW co-designs?

Need infrastructure around HW-SW contracts

* Compilation support (LLVM / Jasmin)

Support larger code, more realistic performance evaluation

* Validate HW implementation (fuzzing / verification)

Reduce gap between model and implementation

66



Conclusion

ProSpeCT Architectural Mimicry

“:ﬂ Software informs hardware about secrets

¢

“:ﬂ Principled linearization and balancing (

Strong security guarantees Security-oriented ISA extension
End-to-end security for constant-time programs

@ &

Q Can be leveraged to write side-channels free sw
Low overhead = Accelerate CT code
No software overhead for constant-time code = _60% overhead of linearized code

Goal: end-to-end security & performance
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Backup



AMi for Balancing (@

Insecure Code

bnz secret else Jjmp
add v a a add
add v v 8 add
j end Jjmp
else:
add v a 4 lﬂﬂﬂ[
end:
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AMi for Balancing (@

bnz secret else Jjmp bnz secret else Jjmp
add v a a add add v a a add
add v v 8 add add v v 8 add
j end Jjmp j end Jjmp
else: else:
add v a 4 add v a 4 add
m.add v v 8 @ add
j end ' jmp
end: end:

70



Hardware Costs

LUT Flip-Flops Critical path
In-order +19.5% +22.9% +0.6%
Out-of-order +26.3% +9.2% -1.0%

Hardware cost overhead of AMi (synthesized on an FPGA)
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Binary Size

Baseline size Balanced Linearized
bytes) T \oAMi  AMi  Molar  AM
Min 132 +0% +0% +8% -6%
Max 500 +41% +41% +92% +2%
Mean 321 +8% +7% +19% +0%

Binary size overhead compared to insecure baseline
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Execution time

Balanced (in order) Linearized (in order) Linearized (000)
No AMi AMi Molnar AMi Molnar AMi
Min +6% +6% +9% -11% -5% -11%
Max +143% +143% +275% +69% +233% +77%
Mean +59% +59% +57% +24% +48% +19%

Execution time overhead compared to insecure baseline (cycles)

73
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