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Programs handle secret data…
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... which can affect timing/microarchitecture
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… and leak via side-channel attacks
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Solution? Constant-time programming!
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if secret 

then foo() 

else bar()

What can influence execution time/microarchitecture?

secret→

→ secret

Control Flow



Memory Accesses
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x = buf[secret]

Cache

Control Flow

What can influence execution time/microarchitecture?



Memory Accesses

if secret 

then foo() 

else bar()

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

What can influence execution time/microarchitecture?



Solution? Constant-time programming!

Leaky instructions
• Control-Flow
• Memory accesses

• Full software countermeasure

• Plenty of analysis tools: ctgrind, MicroWalk, Binsec/Rel

• De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.



Constant-time is not perfect

Security

Still vulnerable to Spectre

Efficiency

Conservative model
Affects performance



End-to-End Solution?

Constant-time Programming
Speculative Constant-time

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?



End-to-End Solution?

Constant-time Programming
Speculative Constant-time

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?Full HW / full SW solutions:
• Partial countermeasures
• Performance



End-to-End Solution?

Hardware-software co-design
Best performance/security tradeoff



End-to-End Solution?

Hardware-software co-design
Best performance/security tradeoff
But challenging to study/adopt



HW/SW Collaboration for End-to-End Security
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Constant-time is vulnerable to Spectre

17

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Constant-time is vulnerable to Spectre
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Predict branch taken

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Consider idx = len



Constant-time is vulnerable to Spectre
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x = mysecret

Leak mysecret to
microarchitecture!

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Predict branch taken

Consider idx = len



How can I protect my code?
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Speculative constant-time

•  Hard to reason about

• New speculation mechanisms?



We need Secure Speculation for Constant-Time!
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Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware defense:
Secure speculation for constant-time!



Hardware Secrecy Tracking
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Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively 
flow to insecure instructions



Illustration with Spectre-v1
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Consider idx = len

char array[len]

    char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:  leak(x)



Illustration with Spectre-v1
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Consider idx = len

Developer marks secretschar array[len]

    secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1
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Consider idx = len

Developer marks secrets

Speculative execution

char array[len]

    secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1

26

Consider idx = len

Developer marks secrets

Speculative execution

x = mysecret:secret

char array[len]

    secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1
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Consider idx = len

char array[len]

    secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret

= 

x not forwarded to leak



How do I know that my defense works?
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How do I know that my defense works?
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Challenges

Adapt HW/SW contract framework to account for

• All existing speculation mechanisms (Spectre, LVI)

• Futuristic speculation mechanisms (value prediction)

• Declassification
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Our contributions

▪  ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets
• Allows for declassification
• Generic: all Spectre variants / LVI

▪ First to consider (Load) Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

▪  Implementation in a RISC-V microarchitecture
• First synthesizable implementation
• Evaluation: hardware cost, performance, annotations

31



ProSpeCT: Generic formal processor model for HST
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All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context 

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful 
predictors



ProSpeCT: Generic formal processor model for HST
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All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context 

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful 
predictors

Security proof



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4

Implicit resolution-based channel!

Rollback to line 1

Resolve prediction?

Commit and goto line 3yes

no

mysecret = 0?



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4

Solution: always rollback when value is secret

Rollback to line 1

mysecret = 0?Resolve prediction?

Rollback to line 1yes

no



Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

• Branch target prediction

• Conservative approach

• 2 secret regions defined by CSRs

38

github.com/proteus-core/prospect

https://github.com/proteus-core/prospect


Evaluation
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Hardware Cost

Synthesized on FPGA

•  LUTs: +17%

•  Registers: +6%

•  Critical path: +2%

Annotation burden

• 4 primitives (HACL*)

•  Annotate secret

• Ensure no secrets spilled

• Stack public in 3/4 cases

• ≤1h / primitive



Evaluation
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Performance overhead (benchmark from [1])

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
      against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in software for constant-time code 
when secrets are precisely annotated



Summary

Software informs hardware about secrets

41

End-to-end security for constant-time programs 

Strong security guarantees 

Low overhead
No software overhead for constant-time code





Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4 



Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4 

C Directly leak condition to 
branch predictor

C Conservative leakage model / high-end platforms



Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4 

C

L

Directly leak condition to 
branch predictor

Indirectly leak condition 
via ≠ target leakage

C Conservative leakage model / high-end platforms

L Liberal leakage model / small microcontrollers



Control-Flow Leakage Mitigations?

Balancing

if (secret)
 add v a a
 add v v 8
else
 add v a 4 
 add v v 0

Linearization (CT)

c = (secret ≠ 0)
add v1 a a
add v1 v1 8
add v2 a 4
v = select c v1 v2

C LL+



Control-Flow Leakage Mitigations?

BalancingLinearization (CT)

‒ Portability (microcontrollers ≠ servers)
‒ Performance (extra instructions, registers)
‒ Security (no security guarantees)

Issues

c = (secret ≠ 0)
add v1 a a
add v1 v1 8
add v2 a 4
v = select c v1 v2

if (secret)
 add v a a
 add v v 8
else
 add v a 4 
 add v v 0C LL+



Goal

Hardware support and small ISA extension

Efficient and principled 

control-flow linearization and balancing

‒ Portability: linearization                    and balancing 

‒ Performance: improve over std. linearization/balancing

‒ Security: leakage contract drives secure software development

LC L+



Contributions

• Mimic Execution

• HW primitive for mimicking instructions

• Architectural Mimicry (AMi)

• Instructions to control mimic execution

• Programming models

• Secure/correct balancing/linearization with AMi

• Implementation in RISC-V

• Evaluation: hardware cost, performance



Mimic execution

5 qualifiers
to control mimic execution

 2 processor modes
       standard / mimic

Qualifiers Standard Mimic

Standard s.inst

Mimic m.inst

Activating a.inst activate mimic mode

Persistent p.inst

Ghost g.inst



AMi for Linearization

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:
 

C

jmp secret≠0
add
add
jmp

add



AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4 
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:
 

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add



AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4 
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:
 

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add

when secret ≠ 0



AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4 
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:
 

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add

when secret = 0



Maintain Correctness?

a.bnz c end
  add v v 1
  add a a 4
  p.store v a
end

No effect on live state 
in mimic mode

Correctness:



Maintain Correctness?

No effect on live state 
in mimic mode

Correctness:

c ≠ 0 

Breaks correctness

a.bnz c end
  add v v 1
  add a a 4
  p.store v a
end



Maintain Correctness?

a.bnz c end
  add v v 1
  add a a 4
  g.load t a
  p.store t a
end

No effect on live state 
in mimic mode

Correctness:

Correct

c ≠ 0 



Enforce Security?

Leakage independent 
of processor mode

Security:a.bnz c end
 add v v 1
  add a a 4    
  g.load t a
  p.store t a
end



Enforce Security?

a = 0   c = 0 

add
add
load 0
store 0

a = 0   c ≠ 0 

add
add
load 4
store 4

Security violation!

a.bnz c end
 add v v 1
  add a a 4    
  g.load t a
  p.store t a
end

a.bnz c end
  add v v 1
  add a a 4
  g.load t a
  p.store t a
end



a.bnz c end
  add v v 1
  p.add a a 4
  g.load t a
  p.store t a
end

a.bnz c end
 add v v 1
  p.add a a 4    
  g.load t a
  p.store t a
end

Enforce Security?

add
add
load 4
store 4

add
add
load 4
store 4

Secure
+correct assuming a is not live

a = 0   c = 0 a = 0   c ≠ 0 



Formalization

• Operational ISA semantics for AMi
• Instrumented with leakage

• Definition well-behaved activating regions
• Proof (under conditions) activating regions are well-behaved

• Nested and recursive activation

• Definitions correct / secure programming model
• Linearization

• Balancing



Implementation

Prototype 32-bit RISC-V implementation on Proteus

• In order & out-of-order

• Mimic instr = no update register file

• Mode-independent stalling 

• Constant-time branch (no prediction)

• 2-bit for instruction qualifiers + 3 CSR for store processor mode

62



Evaluation
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Benchmark

11 programs from [1]

4 configurations: 

Balancing (B) with/wo AMi

Linearization (L) Molnar/AMi

Research question

• Security: tests

• Hardware: max 26% LUTS/FF, 0% CP

• Binary size: +19% → +0% (L)*

• Performance: +48% → +19% (L)*

[1] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted hardening of 
embedded software against interrupt latency side-channel attacks,” in EuroS&P, 2021.

*No change for balancing



Summary

Principled linearization and balancing
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Can be leveraged to write side-channels free sw

Security-oriented ISA extension

Accelerate CT code
-60% overhead of linearized code



A step back

▪ Proteus: extensible RISC-V processor

▪ Security extensions
‒ ProSpeCT
‒ AMi
‒ CHERI
‒ …

RISC-V open standard ISA

→ HW-SW co-design for security



Software Verification
Secure Compilation

Leakage
Abstraction

Security
Property

Hardware Validation



How to ease adoption of HW-SW co-designs?

Need infrastructure around HW-SW contracts

• Compilation support (LLVM / Jasmin)

Support larger code, more realistic performance evaluation

• Validate HW implementation (fuzzing / verification)

Reduce gap between model and implementation



Conclusion

Goal: end-to-end security & performance



Backup



AMi for Balancing

Insecure Code

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4

end:
 

jmp

add
add
jmp

add

L



AMi for Balancing

AMi Balancing

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4
 m.add v v 8
 j end
end:

Insecure Code

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4

end:
 

jmp

add
add
jmp

add
add
jmp

jmp

add
add
jmp

add

L



Hardware Costs

72

LUT Flip-Flops Critical path

In-order +19.5% +22.9% +0.6%

Out-of-order +26.3% +9.2% -1.0%

Hardware cost overhead of AMi (synthesized on an FPGA)



Binary Size

73

Baseline size
(bytes)

Balanced Linearized

No AMi AMi Molnar AMi

Min 132 +0% +0% +8% -6%

Max 500 +41% +41% +92% +2%

Mean 321 +8% +7% +19% +0%

Binary size overhead compared to insecure baseline



Execution time

74

Balanced (in order) Linearized (in order) Linearized (ooo)

No AMi AMi Molnar AMi Molnar AMi

Min +6% +6% +9% -11% -5% -11%

Max +143% +143% +275% +69% +233% +77%

Mean +59% +59% +57% +24% +48% +19%

Execution time overhead compared to insecure baseline (cycles)
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