
Beyond constant-time programming
Hardware-software co-designs for
microarchitectural security

Chalmers Security & Privacy Seminar - November 20th 2023

Lesly-Ann Daniel

Programs handle secret data…

2

?

... which can affect timing/microarchitecture

3

?

… and leak via side-channel attacks

4

!

Solution? Constant-time programming!

5

?

if secret

then foo()

else bar()

What can influence execution time/microarchitecture?

secret→

→ secret

Control Flow

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret

x = buf[secret]

Cache

Control Flow

What can influence execution time/microarchitecture?

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

What can influence execution time/microarchitecture?

Solution? Constant-time programming!

Leaky instructions
• Control-Flow
• Memory accesses

• Full software countermeasure

• Plenty of analysis tools: ctgrind, MicroWalk, Binsec/Rel

• De facto standard for crypto: BearSSL, Libsodium, HACL*, etc.

Constant-time is not perfect

Security

Still vulnerable to Spectre

Efficiency

Conservative model
Affects performance

End-to-End Solution?

Constant-time Programming
Speculative Constant-time

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?

End-to-End Solution?

Constant-time Programming
Speculative Constant-time

Microarchitectural partitioning,
Invisible speculation,

OISA, STT, SPT, ConTExT, etc.

In Hardware?In Software?Full HW / full SW solutions:
• Partial countermeasures
• Performance

End-to-End Solution?

Hardware-software co-design
Best performance/security tradeoff

End-to-End Solution?

Hardware-software co-design
Best performance/security tradeoff
But challenging to study/adopt

HW/SW Collaboration for End-to-End Security

15

Constant-time is vulnerable to Spectre

17

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Constant-time is vulnerable to Spectre

18

Predict branch taken

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Consider idx = len

Constant-time is vulnerable to Spectre

19

x = mysecret

Leak mysecret to
microarchitecture!

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Predict branch taken

Consider idx = len

How can I protect my code?

20

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?

We need Secure Speculation for Constant-Time!

21

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware defense:
Secure speculation for constant-time!

Hardware Secrecy Tracking

22

Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively
flow to insecure instructions

Illustration with Spectre-v1

23

Consider idx = len

char array[len]

 char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

24

Consider idx = len

Developer marks secretschar array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

25

Consider idx = len

Developer marks secrets

Speculative execution

char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

26

Consider idx = len

Developer marks secrets

Speculative execution

x = mysecret:secret

char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

27

Consider idx = len

char array[len]

 secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret

=

x not forwarded to leak

How do I know that my defense works?

28

How do I know that my defense works?

29

Challenges

Adapt HW/SW contract framework to account for

• All existing speculation mechanisms (Spectre, LVI)

• Futuristic speculation mechanisms (value prediction)

• Declassification

30

Our contributions

▪ ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets
• Allows for declassification
• Generic: all Spectre variants / LVI

▪ First to consider (Load) Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

▪ Implementation in a RISC-V microarchitecture
• First synthesizable implementation
• Evaluation: hardware cost, performance, annotations

31

ProSpeCT: Generic formal processor model for HST

32

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful
predictors

ProSpeCT: Generic formal processor model for HST

33

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful
predictors

Security proof

Load Prediction: Rollback correct executions?

34

secret char mysecret

1: x = load mysecret

2: y = x + 4

Load Prediction: Rollback correct executions?

35

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Load Prediction: Rollback correct executions?

36

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Implicit resolution-based channel!

Rollback to line 1

Resolve prediction?

Commit and goto line 3yes

no

mysecret = 0?

Load Prediction: Rollback correct executions?

37

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Solution: always rollback when value is secret

Rollback to line 1

mysecret = 0?Resolve prediction?

Rollback to line 1yes

no

Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

• Branch target prediction

• Conservative approach

• 2 secret regions defined by CSRs

38

github.com/proteus-core/prospect

https://github.com/proteus-core/prospect

Evaluation

39

Hardware Cost

Synthesized on FPGA

• LUTs: +17%

• Registers: +6%

• Critical path: +2%

Annotation burden

• 4 primitives (HACL*)

• Annotate secret

• Ensure no secrets spilled

• Stack public in 3/4 cases

• ≤1h / primitive

Evaluation

40

Performance overhead (benchmark from [1])

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
 against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in software for constant-time code
when secrets are precisely annotated

Summary

Software informs hardware about secrets

41

End-to-end security for constant-time programs

Strong security guarantees

Low overhead
No software overhead for constant-time code

Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4

Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4

C Directly leak condition to
branch predictor

C Conservative leakage model / high-end platforms

Secrets can leak via control-flow

if (secret)
 add v a a
 add v v 8
else
 add v a 4

C

L

Directly leak condition to
branch predictor

Indirectly leak condition
via ≠ target leakage

C Conservative leakage model / high-end platforms

L Liberal leakage model / small microcontrollers

Control-Flow Leakage Mitigations?

Balancing

if (secret)
 add v a a
 add v v 8
else
 add v a 4
 add v v 0

Linearization (CT)

c = (secret ≠ 0)
add v1 a a
add v1 v1 8
add v2 a 4
v = select c v1 v2

C LL+

Control-Flow Leakage Mitigations?

BalancingLinearization (CT)

‒ Portability (microcontrollers ≠ servers)
‒ Performance (extra instructions, registers)
‒ Security (no security guarantees)

Issues

c = (secret ≠ 0)
add v1 a a
add v1 v1 8
add v2 a 4
v = select c v1 v2

if (secret)
 add v a a
 add v v 8
else
 add v a 4
 add v v 0C LL+

Goal

Hardware support and small ISA extension

Efficient and principled

control-flow linearization and balancing

‒ Portability: linearization and balancing

‒ Performance: improve over std. linearization/balancing

‒ Security: leakage contract drives secure software development

LC L+

Contributions

• Mimic Execution

• HW primitive for mimicking instructions

• Architectural Mimicry (AMi)

• Instructions to control mimic execution

• Programming models

• Secure/correct balancing/linearization with AMi

• Implementation in RISC-V

• Evaluation: hardware cost, performance

Mimic execution

5 qualifiers
to control mimic execution

 2 processor modes
 standard / mimic

Qualifiers Standard Mimic

Standard s.inst

Mimic m.inst

Activating a.inst activate mimic mode

Persistent p.inst

Ghost g.inst

AMi for Linearization

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:

C

jmp secret≠0
add
add
jmp

add

AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add

AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add

when secret ≠ 0

AMi for Linearization

Linearization

a.bnz secret else
 add v a a
 add v v 8
else:
a.beqz secret end
 add v a 4
end:

Insecure Code

bnz secret else
 add v a a
 add v v 8
 j end
else:
 add v a 4
end:

C

jmp secret≠0
add
add
jmp

add

jmp
add
add

jmp
add

when secret = 0

Maintain Correctness?

a.bnz c end
 add v v 1
 add a a 4
 p.store v a
end

No effect on live state
in mimic mode

Correctness:

Maintain Correctness?

No effect on live state
in mimic mode

Correctness:

c ≠ 0

Breaks correctness

a.bnz c end
 add v v 1
 add a a 4
 p.store v a
end

Maintain Correctness?

a.bnz c end
 add v v 1
 add a a 4
 g.load t a
 p.store t a
end

No effect on live state
in mimic mode

Correctness:

Correct

c ≠ 0

Enforce Security?

Leakage independent
of processor mode

Security:a.bnz c end
 add v v 1
 add a a 4
 g.load t a
 p.store t a
end

Enforce Security?

a = 0 c = 0

add
add
load 0
store 0

a = 0 c ≠ 0

add
add
load 4
store 4

Security violation!

a.bnz c end
 add v v 1
 add a a 4
 g.load t a
 p.store t a
end

a.bnz c end
 add v v 1
 add a a 4
 g.load t a
 p.store t a
end

a.bnz c end
 add v v 1
 p.add a a 4
 g.load t a
 p.store t a
end

a.bnz c end
 add v v 1
 p.add a a 4
 g.load t a
 p.store t a
end

Enforce Security?

add
add
load 4
store 4

add
add
load 4
store 4

Secure
+correct assuming a is not live

a = 0 c = 0 a = 0 c ≠ 0

Formalization

• Operational ISA semantics for AMi
• Instrumented with leakage

• Definition well-behaved activating regions
• Proof (under conditions) activating regions are well-behaved

• Nested and recursive activation

• Definitions correct / secure programming model
• Linearization

• Balancing

Implementation

Prototype 32-bit RISC-V implementation on Proteus

• In order & out-of-order

• Mimic instr = no update register file

• Mode-independent stalling

• Constant-time branch (no prediction)

• 2-bit for instruction qualifiers + 3 CSR for store processor mode

62

Evaluation

63

Benchmark

11 programs from [1]

4 configurations:

Balancing (B) with/wo AMi

Linearization (L) Molnar/AMi

Research question

• Security: tests

• Hardware: max 26% LUTS/FF, 0% CP

• Binary size: +19% → +0% (L)*

• Performance: +48% → +19% (L)*

[1] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted hardening of
embedded software against interrupt latency side-channel attacks,” in EuroS&P, 2021.

*No change for balancing

Summary

Principled linearization and balancing

64

Can be leveraged to write side-channels free sw

Security-oriented ISA extension

Accelerate CT code
-60% overhead of linearized code

A step back

▪ Proteus: extensible RISC-V processor

▪ Security extensions
‒ ProSpeCT
‒ AMi
‒ CHERI
‒ …

RISC-V open standard ISA

→ HW-SW co-design for security

Software Verification
Secure Compilation

Leakage
Abstraction

Security
Property

Hardware Validation

How to ease adoption of HW-SW co-designs?

Need infrastructure around HW-SW contracts

• Compilation support (LLVM / Jasmin)

Support larger code, more realistic performance evaluation

• Validate HW implementation (fuzzing / verification)

Reduce gap between model and implementation

Conclusion

Goal: end-to-end security & performance

Backup

AMi for Balancing

Insecure Code

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4

end:

jmp

add
add
jmp

add

L

AMi for Balancing

AMi Balancing

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4
 m.add v v 8
 j end
end:

Insecure Code

bnz secret else

 add v a a
 add v v 8
 j end
else:
 add v a 4

end:

jmp

add
add
jmp

add
add
jmp

jmp

add
add
jmp

add

L

Hardware Costs

72

LUT Flip-Flops Critical path

In-order +19.5% +22.9% +0.6%

Out-of-order +26.3% +9.2% -1.0%

Hardware cost overhead of AMi (synthesized on an FPGA)

Binary Size

73

Baseline size
(bytes)

Balanced Linearized

No AMi AMi Molnar AMi

Min 132 +0% +0% +8% -6%

Max 500 +41% +41% +92% +2%

Mean 321 +8% +7% +19% +0%

Binary size overhead compared to insecure baseline

Execution time

74

Balanced (in order) Linearized (in order) Linearized (ooo)

No AMi AMi Molnar AMi Molnar AMi

Min +6% +6% +9% -11% -5% -11%

Max +143% +143% +275% +69% +233% +77%

Mean +59% +59% +57% +24% +48% +19%

Execution time overhead compared to insecure baseline (cycles)

	Slide 1: Beyond constant-time programming Hardware-software co-designs for microarchitectural security
	Slide 2: Programs handle secret data…
	Slide 3: ... which can affect timing/microarchitecture
	Slide 4: … and leak via side-channel attacks
	Slide 5: Solution? Constant-time programming!
	Slide 6: What can influence execution time/microarchitecture?
	Slide 7: What can influence execution time/microarchitecture?
	Slide 8: What can influence execution time/microarchitecture?
	Slide 9: Solution? Constant-time programming!
	Slide 10: Constant-time is not perfect
	Slide 11: End-to-End Solution?
	Slide 12: End-to-End Solution?
	Slide 13: End-to-End Solution?
	Slide 14: End-to-End Solution?
	Slide 15: HW/SW Collaboration for End-to-End Security
	Slide 16
	Slide 17: Constant-time is vulnerable to Spectre
	Slide 18: Constant-time is vulnerable to Spectre
	Slide 19: Constant-time is vulnerable to Spectre
	Slide 20: How can I protect my code?
	Slide 21: We need Secure Speculation for Constant-Time!
	Slide 22: Hardware Secrecy Tracking
	Slide 23: Illustration with Spectre-v1
	Slide 24: Illustration with Spectre-v1
	Slide 25: Illustration with Spectre-v1
	Slide 26: Illustration with Spectre-v1
	Slide 27: Illustration with Spectre-v1
	Slide 28: How do I know that my defense works?
	Slide 29: How do I know that my defense works?
	Slide 30: Challenges
	Slide 31: Our contributions
	Slide 32: ProSpeCT: Generic formal processor model for HST
	Slide 33: ProSpeCT: Generic formal processor model for HST
	Slide 34: Load Prediction: Rollback correct executions?
	Slide 35: Load Prediction: Rollback correct executions?
	Slide 36: Load Prediction: Rollback correct executions?
	Slide 37: Load Prediction: Rollback correct executions?
	Slide 38: Implementation
	Slide 39: Evaluation
	Slide 40: Evaluation
	Slide 41: Summary
	Slide 42
	Slide 43: Secrets can leak via control-flow
	Slide 44: Secrets can leak via control-flow
	Slide 45: Secrets can leak via control-flow
	Slide 46: Control-Flow Leakage Mitigations?
	Slide 47: Control-Flow Leakage Mitigations?
	Slide 48: Goal
	Slide 49: Contributions
	Slide 50: Mimic execution
	Slide 51: AMi for Linearization
	Slide 52: AMi for Linearization
	Slide 53: AMi for Linearization
	Slide 54: AMi for Linearization
	Slide 55: Maintain Correctness?
	Slide 56: Maintain Correctness?
	Slide 57: Maintain Correctness?
	Slide 58: Enforce Security?
	Slide 59: Enforce Security?
	Slide 60: Enforce Security?
	Slide 61: Formalization
	Slide 62: Implementation
	Slide 63: Evaluation
	Slide 64: Summary
	Slide 65: A step back
	Slide 66
	Slide 67: How to ease adoption of HW-SW co-designs?
	Slide 68: Conclusion
	Slide 69: Backup
	Slide 70: AMi for Balancing
	Slide 71: AMi for Balancing
	Slide 72: Hardware Costs
	Slide 73: Binary Size
	Slide 74: Execution time

