
ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

Lesly-Ann Daniel

KU Leuven

Marton Bognar

KU Leuven

Job Noorman

KU Leuven

September 9th 2023

TASER Workshop

Tamara Rezk

INRIA

Sébastien Bardin

CEA List

Frank Piessens

KU Leuven

I want to protect my secrets...

2

Easy: Constant-Time Programming!

mysecret leak()

De facto standard for crypto

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

… even against Spectre attacks

Predict branch taken

3

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

… even against Spectre attacks

x = mysecret

Leaks mysecret to microarchitecture!

Predict branch taken

4

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

How can I protect my code?

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?

5

We need Secure Speculation for Constant-Time!

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware defense:
Secure speculation for constant-time!

6

Hardware Secrecy Tracking

7

Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively
flow to insecure instructions

How do I know that my defense works?

8

How do I know that my defense works?

9

Goal

Show that HST provides secure speculation
for constant-time programs

How do I know that my defense works?

10

How?

Challenges

Adapt HW/SW contract framework to account for

• All existing speculation mechanisms (Spectre, LVI)

• Futuristic speculation mechanisms (value prediction)

• Declassification

11

Our contributions

▪ ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets

• Allows for declassification

• Generic: all Spectre variants / LVI

▪ First to consider (Load) Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

▪ Implementation in a RISC-V microarchitecture
• First synthesizable implementation

• Evaluation: hardware cost, performance, annotations
12

Illustration with Spectre-v1

Consider idx = len

13

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

14

Developer marks secretschar array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

15

Developer marks secrets

Speculative execution

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

16

Developer marks secrets

Speculative execution

x = mysecret:secret

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

17

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret

=

x not forwarded to leak

Load Prediction: Rollback correct executions?

18

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Load Prediction: Rollback correct executions?

19

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Implicit resolution-based channel!

Rollback to line 1

Resolve prediction?

Commit and goto line 3yes

no

mysecret = 0?

Load Prediction: Rollback correct executions?

20

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Solution: always rollback when value is secret

Rollback to line 1

mysecret = 0?Resolve prediction?

Rollback to line 1yes

no

ProSpeCT: Generic formal processor model for HST

All public values are leaked & predictions can depend on any public value

Semantics of out-of-order speculative processor with HST

21

Security proof
Constant-time programs do not leak secrets

Declassify = write secrets to public memory

Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

• Branch target prediction

• Conservative approach

• 2 secret regions defined by CSRs

• Open source

22

https://github.com/proteus-core/prospect

Limited Hardware Cost

• LUTs: +17%

• Registers: +6%

• Critical path: +2%

https://github.com/proteus-core/prospect

Evaluation

23

4 primitives (HACL*)

• Annotate secret

• Ensure no secrets spilled

• Stack public in 3/4 cases

• ≤1h / primitive

Performance overhead (benchmark from [1])

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in software for constant-time code
when secrets are precisely annotated

Conclusion

Software informs hardware about secrets

End-to-end security for constant-time programs

Strong security guarantees

Low overhead
No software overhead for constant-time code

24

Icons made by Freepik, Vectors Market, monkik from www.flaticon.com

github.com/proteus-core/prospect

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect

