ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

September 9t 2023
TASER Workshop

Lesly-Ann Daniel Marton Bognar Job Noorman Sébastien Bardin Tamara Rezk Frank Piessens
KU Leuven KU Leuven KU Leuven CEA List INRIA KU Leuven

| want to protect my secrets...

//;har array|[len]
char mysecret
1f (1dx < len)

X = array[idx]

~

Easy: Constant-Time Programming!

mysecret -*b leak ()

1
2
3. _ leak (x) o De facto standard for crypto

... even against Spectre attacks

//;har array|[len]

char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
_

~

/

Predict branch taken £

o

... even against Spectre attacks

/char array[len] \ /

char mysecret

. . Predict branch taken £
1T (1dx < len)

x = array[idx] X = mysecret

3 leak (x)
_

Leaks mysecret to microarchitecture!

How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Caul.igi* Craig Disgelkoen* Klaus v. Gleissenthall’
Dean Tullsen’ Deian Stefan’ Tamara Rezk* Gilles Barthe**

"UC San Diego, USA *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Speculative constant-time
e Hard to reason about

* New speculation mechanisms?

We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
Q Hardware shall not speculatively leak secrets

?ﬁ But still be efficient and enable speculation

2" Hardware defense:
‘, Secure speculation for constant-time!

Hardware Secrecy Tracking

e Label secrets * Track security labels

« Constant-time program e Secrets do not speculatively

—— | flow to insecure instructions

ConTEXT: A Generic Approach for Mitigating .@
S

Spectre pectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
Michael Schwarz!, Moritz Lipp!, Claudio Canellal, Robert Schilling!-2, Florian Kdrgl1 Daniel Grus]acob FUStOS Farzad Farshchi Heechul Yun
!Graz University of Technology 2Kno Mnmens Ot University of Kansas University of Kansas

Speculatlve Privacy Tracklng (SPT): Leaklng Information From.
Speculative Execution Without Compromising Privacy

Rutvik Choudhary Jiyong Yu
UIUC, USA UIUC, USA
Christopher W. Fletcher Adam Morrison

UIUC, USA Tel Aviv University, Israel 7

How do | know that my defense works?

SYOUBUILT/AR
AHARDWARE/DEFENSE?

THAT'S GUTE...

How do | know that my defense works?

Goal =

- |Show that HST provides secure speculation
for constant-time programs g

How do | know that my defense works?

How? =

Hardware-Software Contracts for
[— Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke¥, and Pepe Vila*
*IMDEA Software Institute TMicrosoft Research *Saarland University

||K l \[“\\i g\‘ .‘ ;

YOUBUILT;AY
{ARDWARE/DEFENSE2 dha

= amic__yne ,&_".4.,. -
i P N DN W 2 L T MRS e
P o e e

10

Challenges

Adapt HW/SW contract framework to account for

 All existing speculation mechanisms (Spectre, LVI)
e Futuristic speculation mechanisms (value prediction)

* Declassification

11

Our contributions

" ProSpeCT: Formal processor model with HST
* Proof: constant-time programs do not leak secrets

* Allows for declassification
e Generic: all Spectre variants / LVI —

= First to consider (Load) Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

" |[mplementation in a RISC-V microarchitecture
* First synthesizable implementation
e Evaluation: hardware cost, performance, annotations e

12

lllustration with Spectre-v1

/;har array/|[len] \\
secret char mysecret
l: 1 1f (1dx < len)

X = array[idx]

3: leak (x)
_ i Y

Consider idx = len

13

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret
l:] 1£f (1dx < len)

X = array[idx]

3: leak (x)
_ i Y

Consider idx = len

14

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret Speculative execution
l:] 1f (1dx < len)

X = array[idx]

3 leak (x)
_ i J

Consider idx = len

15

lllustration with Spectre-v1

/;har array|[len]
secret char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
_

~

/

Consider idx = len

Developer marks secrets

Speculative execution

X = mysecret:secret

16

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets
secret char mysecret « |
1: | if (idx < len) ‘
x = array[idx] J

4

3 leak (x)
_

Consider idx = len

Speculative execution

X = mysecret:secret

Speculative execution + secret

x hot forwarded to 1eak

17

Load Prediction: Rollback correct executions?

(
secret char mysecret]

1:| x = load mysecret Predict x =0

2:1 v =x + 4 ‘ _
L) Compute v =4

18

Load Prediction: Rollback correct executions?

(
secret char mysecret]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

_

yes Commit and goto line 3
Resolve prediction? @cre@
Rollback to line 1

no

Implicit resolution-based channel!

19

Load Prediction: Rollback correct executions?

(
secret char mysecret]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

_

YES Rollback to line 1
Resolve prediction? @cre@
Rollback to line 1

no

Solution: always rollback when value is secret

20

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST
All public values are leaked & predictions can depend on any public value

Declassify = write secrets to public memory

_=ﬁ Security proof
@ Constant-time programs do not leak secrets

21

Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor
* Branch target prediction
* Conservative approach
» 2 secret regions defined by CSRs

* Open source

https://eithub.com/proteus-core/prospect

s o

_

[Limited Hardware Cost\

LUTs: +17%

Registers: +6%

Critical path: +2% /

22

https://github.com/proteus-core/prospect

Evaluation

/ 4 primitives (HACL*) \ Performance overhead (benchmark from [1])

* Annotate secret Speculation/Crypto ~ 25/75 50/50 75/25 90/10
* Ensure no secrets spilled Precise (Key) 0% 0% 0% 0%
e Stack public in 3/4 cases Conservative (All) 10% 25% 36% 45%
K <1h / primitive /
4

No overhead in software for constant-time code
when secrets are precisely annotated

.

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism

against Spectre Attacks”. In: DAC. 2019 53

Conclusion

ARTIFACT ARTIFACT ARTIFACT
EVALUATED | EVALUATED EVALUATED

usenix usenix usenix
' SSSSSSSSSSS ’ SSSSSSSSSSS ' AAAAAAAAAAA

AVAILABLE REPRODUCED FUNCTIONAL

Software informs hardware about secrets

Strong security guarantees

End-to-end security for constant-time programs

Low overhead

No software overhead for constant-time code

github.com/proteus-core/prospect

Icons made by Freepik, Vectors Market, monkik from www.flaticon.com

24

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect

