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Need to protect against microarchitectural attacks




Need to protect against microarchitectural attacks




Easy: constant-time programming!

//;har array|[len] \\
char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
\_ /




Easy: constant-time programming!

/Zmar array([len] <\\ A\ (:E)
char mysecret
1:

1f (1dx < len)

x = array[idx] mysecret -*» leak ()

2
3 leak (x)
\ o

De facto standard for crypto



... Still vulnerable to Spectre attacks

//;har array|[len]

char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
\_

~

/

Predict branch taken £

o



... Still vulnerable to Spectre attacks

/char array[len] \ /

char mysecret

. . Predict branch taken £
1T (1dx < len)

X = array[idx] X = mysecret

3 leak (x)
\_

Leaks mysecret to microarchitecture!




How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Caul.igi* Craig Disgelkoen* Klaus v. Gleissenthall’
Dean Tullsen’ Deian Stefan’ Tamara Rezk* Gilles Barthe**

"UC San Diego, USA  *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Speculative constant-time
e Hard to reason about

* New speculation mechanisms?




We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
Q Hardware shall not speculatively leak secrets

fﬁ But still be efficient and enable speculation

2" Hardware defense:
‘, Secure speculation for constant-time!



Hardware Secrecy Tracking

e Label secrets * Track security labels

« Constant-time program e Secrets do not speculatively

—— | flow to insecure instructions

ConTEXT: A Generic Approach for Mitigating .@
S

Spectre pectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
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Speculatlve Privacy Tracklng (SPT): Leaklng Information From.
Speculative Execution Without Compromising Privacy
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lllustration with Spectre-v1

/;har array/|[len] \\
char mysecret
l: 1 1f (1dx < len)

X = array[i1dx]

3 leak (x)
\_ i J

Consider idx = len
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret
l: ] 1£f (1dx < len)

X = array[i1dx]

3: leak (x)
\_ © Y

Consider idx = len
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret Speculative execution
l: ] 1f (1dx < len)

X = array[i1dx]

3 leak (x)
\_ i J

Consider idx = len
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lllustration with Spectre-v1

/;har array|[len]
secret char mysecret
1f (1dx < len)

X = array[i1dx]

3 leak (x)
\_

~

/

Consider idx = len

Developer marks secrets

Speculative execution

X = mysecret:secret
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lllustration with Spectre-v1

/char array[len] \ Developer marks secrets
secret char mysecret « |
1: | if (idx < len) ‘
x = array[idx] J

4

3 leak (x)
\_

Consider idx = len

Speculative execution

X = mysecret:secret

Speculative execution + secret

x hot forwarded to 1eak
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How do | know that my defense works?

SYOUBUILT/AR
AHARDWARE/DEFENSE?

THAT'S GUTE...




How do | know that my defense works?

YOUBUILT/AR
{ARDWARE/DEFENSE2 tha

Hardware-Software Contracts for
Pl Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute "Microsoft Research *Saarland University
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Challenges

Adapt HW/SW contract framework to account for

 All existing speculation mechanisms (Spectre, LVI)
e Futuristic speculation mechanisms (value prediction)

* Declassification
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Our contributions

" ProSpeCT: Formal processor model with HST
* Proof: constant-time programs do not leak secrets

* Allows for declassification
e Generic: all Spectre variants / LVI —

= First to consider (Load) Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

" |[mplementation in a RISC-V microarchitecture
* First synthesizable implementation
e Evaluation: hardware cost, performance, annotations e
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ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context : :
, _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

20



ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context : :
, _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

Security proof

— Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)
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Load Prediction: Rollback correct executions?

4 )

secret char mysecret

1:] x = load mysecret

2:1l v =x + 4
G J

22



Load Prediction: Rollback correct executions?

(
secret char mysecret ]
1:| x = load mysecret Predict x =0
2:1l vy =x + 4 ‘ —
L ) Compute y =4
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Load Prediction: Rollback correct executions?

(
secret char mysecret ]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

\_

yes Commit and goto line 3
Resolve prediction? @cre@
Rollback to line 1

no

Implicit resolution-based channel!
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Load Prediction: Rollback correct executions?

(
secret char mysecret ]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

\_

YES Rollback to line 1
Resolve prediction? @cre@
Rollback to line 1

no

Solution: always rollback when value is secret
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Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

s o

* Branch target prediction

* Conservative approach (Limited Hardware Cost\

» 2 secret regions defined by CSRs * LUTs: +17%

* Registers: +6%

e Critical path: +2%
\ P -
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Evaluation

/ 4 primitives (HACL*) \ Performance overhead (benchmark from [1])

* Annotate secret Speculation/Crypto ~ 25/75 50/50 75/25 90/10
* Ensure no secrets spilled Precise (Key) 0% 0% 0% 0%
e Stack public in 3/4 cases Conservative (All) 10%  25% 36% 45%
K <1h / primitive /
4

No overhead in software for constant-time code
when secrets are precisely annotated

.

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism

against Spectre Attacks”. In: DAC. 2019 >7



Conclusion

ARTIFACT ARTIFACT ARTIFACT
EVALUATED | EVALUATED EVALUATED

usenix usenix usenix
' SSSSSSSSSSS ’ SSSSSSSSSSS ' AAAAAAAAAAA

AVAILABLE REPRODUCED FUNCTIONAL

Software informs hardware about secrets

Strong security guarantees

End-to-end security for constant-time programs

Low overhead

No software overhead for constant-time code

github.com/proteus-core/prospect

Icons made by Freepik, Vectors Market, monkik from www.flaticon.com
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https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect

A step back

RISC-V open standard ISA
- HW-SW co-design for security

RISC-V

" Proteus: extensible RISC-V processor

= Security extensions

— ProSpeCT
— ISA extension for CF balancing/linearization
— CHERI




Future work

GREATSPLITS!!
How to ease adoption of HW-SW co-designs? & &%

- Need infrastructure around HW-SW contracts

= Secure compilation/compiler support (LLVM, Jasmin?)
= Binary analysis (Binsec/angr)

= Validate HW implementation (fuzzing, verification) -0 | Iy, A
= Mdrton Bognar , " S‘THEF“TUBE" G

Other relevant projects at m Distn N=t

= Attacks/Defenses for TEEs = Jo Van Bulck

* Formalization/verification of ISA security guarantees = Dominique Devriese
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