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Need to protect against microarchitectural attacks
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Need to protect against microarchitectural attacks
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Easy: constant-time programming!
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char array[len]

char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Easy: constant-time programming!
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mysecret leak()

De facto standard for crypto

char array[len]

char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



… still vulnerable to Spectre attacks

Predict branch taken
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char array[len]

char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



… still vulnerable to Spectre attacks

x = mysecret

Leaks mysecret to microarchitecture!

Predict branch taken
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char array[len]

char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



How can I protect my code?

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?
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We need Secure Speculation for Constant-Time!

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware defense:
Secure speculation for constant-time!

9



Hardware Secrecy Tracking
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Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively 
flow to insecure instructions



Illustration with Spectre-v1

Consider idx = len
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char array[len]

char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:  leak(x)



Illustration with Spectre-v1

Consider idx = len
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Developer marks secretschar array[len]

secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1

Consider idx = len
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Developer marks secrets

Speculative execution

char array[len]

secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1

Consider idx = len
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Developer marks secrets

Speculative execution

x = mysecret:secret

char array[len]

secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)



Illustration with Spectre-v1

Consider idx = len
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char array[len]

secret char mysecret

1:  if (idx < len)

2:      x = array[idx]

3:      leak(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret

= 

x not forwarded to leak



How do I know that my defense works?
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How do I know that my defense works?
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Challenges

Adapt HW/SW contract framework to account for

• All existing speculation mechanisms (Spectre, LVI)

• Futuristic speculation mechanisms (value prediction)

• Declassification
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Our contributions

▪ ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets

• Allows for declassification

• Generic: all Spectre variants / LVI

▪ First to consider (Load) Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

▪ Implementation in a RISC-V microarchitecture
• First synthesizable implementation

• Evaluation: hardware cost, performance, annotations
19



ProSpeCT: Generic formal processor model for HST

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context 

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡
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Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful 

predictors



ProSpeCT: Generic formal processor model for HST

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context 

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡
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Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful 

predictors

Security proof



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4

Implicit resolution-based channel!

Rollback to line 1

Resolve prediction?

Commit and goto line 3yes

no

mysecret = 0?



Load Prediction: Rollback correct executions?
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secret char mysecret

1:  x = load mysecret

2:  y = x + 4

Predict x = 0

Compute y = 4

Solution: always rollback when value is secret

Rollback to line 1

mysecret = 0?Resolve prediction?

Rollback to line 1yes

no



Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

• Branch target prediction

• Conservative approach

• 2 secret regions defined by CSRs
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Limited Hardware Cost

• LUTs: +17%

• Registers: +6%

• Critical path: +2%



Evaluation
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4 primitives (HACL*)

• Annotate secret

• Ensure no secrets spilled

• Stack public in 3/4 cases

• ≤1h / primitive

Performance overhead (benchmark from [1])

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in software for constant-time code 
when secrets are precisely annotated



Conclusion

Software informs hardware about secrets

End-to-end security for constant-time programs 

Strong security guarantees 

Low overhead
No software overhead for constant-time code
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Icons made by Freepik, Vectors Market, monkik from www.flaticon.com

github.com/proteus-core/prospect

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect


A step back

▪ Proteus: extensible RISC-V processor

▪ Security extensions
‒ ProSpeCT
‒ ISA extension for CF balancing/linearization
‒ CHERI
‒ …

RISC-V open standard ISA

→ HW-SW co-design for security



Other relevant projects at

▪ Attacks/Defenses for TEEs ⟹ Jo Van Bulck

▪ Formalization/verification of ISA security guarantees ⟹ Dominique Devriese

Future work

How to ease adoption of HW-SW co-designs?
→ Need infrastructure around HW-SW contracts

▪ Secure compilation/compiler support (LLVM, Jasmin?)

▪ Binary analysis (Binsec/angr)

▪ Validate HW implementation (fuzzing, verification)
⟹Márton Bognár
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