ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

I 3OV ISENIX
September 297 2023 SECURITY aYMPOSIUM

SPLITS Security Workshop _

GUST 9-11, 2023

Lesly-Ann Daniel Marton Bognar Job Noorman Sébastien Bardin Tamara Rezk Frank Piessens

KU Leuven KU Leuven KU Leuven CEA List INRIA KU Leuven

Need to protect against microarchitectural attacks

Need to protect against microarchitectural attacks

Easy: constant-time programming!

//;har array|[len] \\
char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
_ /

Easy: constant-time programming!

/Zmar array([len] <\\ A\ (:E)
char mysecret
1:

1f (1dx < len)

x = array[idx] mysecret -*» leak ()

2
3 leak (x)
\ o

De facto standard for crypto

... Still vulnerable to Spectre attacks

//;har array|[len]

char mysecret
1f (1dx < len)

X = array[idx]

3 leak (x)
_

~

/

Predict branch taken £

o

... Still vulnerable to Spectre attacks

/char array[len] \ /

char mysecret

. . Predict branch taken £
1T (1dx < len)

X = array[idx] X = mysecret

3 leak (x)
_

Leaks mysecret to microarchitecture!

How can | protect my code?

Constant-Time Foundations for the New Spectre Era

Sunjay Caul.igi* Craig Disgelkoen* Klaus v. Gleissenthall’
Dean Tullsen’ Deian Stefan’ Tamara Rezk* Gilles Barthe**

"UC San Diego, USA *INRIA Sophia Antipolis, France
*MPI for Security and Privacy, Germany *IMDEA Software Institute, Spain

Speculative constant-time
e Hard to reason about

* New speculation mechanisms?

We need Secure Speculation for Constant-Time!

l Developers should not care about speculations
Q Hardware shall not speculatively leak secrets

fﬁ But still be efficient and enable speculation

2" Hardware defense:
‘, Secure speculation for constant-time!

Hardware Secrecy Tracking

e Label secrets * Track security labels

« Constant-time program e Secrets do not speculatively

—— | flow to insecure instructions

ConTEXT: A Generic Approach for Mitigating .@
S

Spectre pectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks
Michael Schwarz!, Moritz Lipp!, Claudio Canellal, Robert Schilling!-2, Florian Kdrgl1 Daniel Grus]acob FUStOS Farzad Farshchi Heechul Yun
!Graz University of Technology 2Kno Mnmens Ot University of Kansas University of Kansas

Speculatlve Privacy Tracklng (SPT): Leaklng Information From.
Speculative Execution Without Compromising Privacy

Rutvik Choudhary Jiyong Yu
UIUC, USA UIUC, USA
Christopher W. Fletcher Adam Morrison

UIUC, USA Tel Aviv University, Israel 10

lllustration with Spectre-v1

/;har array/|[len] \\
char mysecret
l: 1 1f (1dx < len)

X = array[i1dx]

3 leak (x)
_ i J

Consider idx = len

11

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret
l:] 1£f (1dx < len)

X = array[i1dx]

3: leak (x)
_ © Y

Consider idx = len

12

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets

secret char mysecret Speculative execution
l:] 1f (1dx < len)

X = array[i1dx]

3 leak (x)
_ i J

Consider idx = len

13

lllustration with Spectre-v1

/;har array|[len]
secret char mysecret
1f (1dx < len)

X = array[i1dx]

3 leak (x)
_

~

/

Consider idx = len

Developer marks secrets

Speculative execution

X = mysecret:secret

14

lllustration with Spectre-v1

/char array[len] \ Developer marks secrets
secret char mysecret « |
1: | if (idx < len) ‘
x = array[idx] J

4

3 leak (x)
_

Consider idx = len

Speculative execution

X = mysecret:secret

Speculative execution + secret

x hot forwarded to 1eak

15

How do | know that my defense works?

SYOUBUILT/AR
AHARDWARE/DEFENSE?

THAT'S GUTE...

How do | know that my defense works?

YOUBUILT/AR
{ARDWARE/DEFENSE2 tha

Hardware-Software Contracts for
Pl Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute "Microsoft Research *Saarland University

17

Challenges

Adapt HW/SW contract framework to account for

 All existing speculation mechanisms (Spectre, LVI)
e Futuristic speculation mechanisms (value prediction)

* Declassification

18

Our contributions

" ProSpeCT: Formal processor model with HST
* Proof: constant-time programs do not leak secrets

* Allows for declassification
e Generic: all Spectre variants / LVI —

= First to consider (Load) Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

" |[mplementation in a RISC-V microarchitecture
* First synthesizable implementation
e Evaluation: hardware cost, performance, annotations e

19

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context : :
, _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

20

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

— Abstract microarchitectural context : :
, _ Attacker observations/influence
- Functions update, predict, next
All public values are leaked / influence predictions Generic/Powerful
predictors

Declassify = write secrets to public memory

— Beware unintentional declassification

Security proof

— Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

21

Load Prediction: Rollback correct executions?

4)

secret char mysecret

1:] x = load mysecret

2:1l v =x + 4
G J

22

Load Prediction: Rollback correct executions?

(
secret char mysecret]
1:| x = load mysecret Predict x =0
2:1l vy =x + 4 ‘ —
L) Compute y =4

23

Load Prediction: Rollback correct executions?

(
secret char mysecret]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

_

yes Commit and goto line 3
Resolve prediction? @cre@
Rollback to line 1

no

Implicit resolution-based channel!

24

Load Prediction: Rollback correct executions?

(
secret char mysecret]
1:]| x = load mysecret ‘ Predict x =0
iy = x + 4 >, Compute v =4

_

YES Rollback to line 1
Resolve prediction? @cre@
Rollback to line 1

no

Solution: always rollback when value is secret

25

Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

s o

* Branch target prediction

* Conservative approach (Limited Hardware Cost\

» 2 secret regions defined by CSRs * LUTs: +17%

* Registers: +6%

e Critical path: +2%
\ P -

26

Evaluation

/ 4 primitives (HACL*) \ Performance overhead (benchmark from [1])

* Annotate secret Speculation/Crypto ~ 25/75 50/50 75/25 90/10
* Ensure no secrets spilled Precise (Key) 0% 0% 0% 0%
e Stack public in 3/4 cases Conservative (All) 10% 25% 36% 45%
K <1h / primitive /
4

No overhead in software for constant-time code
when secrets are precisely annotated

.

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism

against Spectre Attacks”. In: DAC. 2019 >7

Conclusion

ARTIFACT ARTIFACT ARTIFACT
EVALUATED | EVALUATED EVALUATED

usenix usenix usenix
' SSSSSSSSSSS ’ SSSSSSSSSSS ' AAAAAAAAAAA

AVAILABLE REPRODUCED FUNCTIONAL

Software informs hardware about secrets

Strong security guarantees

End-to-end security for constant-time programs

Low overhead

No software overhead for constant-time code

github.com/proteus-core/prospect

Icons made by Freepik, Vectors Market, monkik from www.flaticon.com

28

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect

A step back

RISC-V open standard ISA
- HW-SW co-design for security

RISC-V

" Proteus: extensible RISC-V processor

= Security extensions

— ProSpeCT
— ISA extension for CF balancing/linearization
— CHERI

Future work

GREATSPLITS!!
How to ease adoption of HW-SW co-designs? & &%

- Need infrastructure around HW-SW contracts

= Secure compilation/compiler support (LLVM, Jasmin?)
= Binary analysis (Binsec/angr)

= Validate HW implementation (fuzzing, verification) -0 | Iy, A
= Mdrton Bognar , " S‘THEF“TUBE" G

Other relevant projects at m Distn N=t

= Attacks/Defenses for TEEs = Jo Van Bulck

* Formalization/verification of ISA security guarantees = Dominique Devriese

	Slide 1: ProSpeCT: Provably Secure Speculation for the Constant-Time Policy
	Slide 2: Need to protect against microarchitectural attacks
	Slide 3: Need to protect against microarchitectural attacks
	Slide 4: Easy: constant-time programming!
	Slide 5: Easy: constant-time programming!
	Slide 6: … still vulnerable to Spectre attacks
	Slide 7: … still vulnerable to Spectre attacks
	Slide 8: How can I protect my code?
	Slide 9: We need Secure Speculation for Constant-Time!
	Slide 10: Hardware Secrecy Tracking
	Slide 11: Illustration with Spectre-v1
	Slide 12: Illustration with Spectre-v1
	Slide 13: Illustration with Spectre-v1
	Slide 14: Illustration with Spectre-v1
	Slide 15: Illustration with Spectre-v1
	Slide 16: How do I know that my defense works?
	Slide 17: How do I know that my defense works?
	Slide 18: Challenges
	Slide 19: Our contributions
	Slide 20: ProSpeCT: Generic formal processor model for HST
	Slide 21: ProSpeCT: Generic formal processor model for HST
	Slide 22: Load Prediction: Rollback correct executions?
	Slide 23: Load Prediction: Rollback correct executions?
	Slide 24: Load Prediction: Rollback correct executions?
	Slide 25: Load Prediction: Rollback correct executions?
	Slide 26: Implementation
	Slide 27: Evaluation
	Slide 28: Conclusion
	Slide 29: A step back
	Slide 30: Future work

