
ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

Lesly-Ann Daniel

KU Leuven

Marton Bognar

KU Leuven

Job Noorman

KU Leuven

September 29th 2023

SPLiTS Security Workshop

Tamara Rezk

INRIA

Sébastien Bardin

CEA List

Frank Piessens

KU Leuven

Need to protect against microarchitectural attacks

2

?

Need to protect against microarchitectural attacks

3

!

Easy: constant-time programming!

4

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Easy: constant-time programming!

5

mysecret leak()

De facto standard for crypto

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

… still vulnerable to Spectre attacks

Predict branch taken

6

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

… still vulnerable to Spectre attacks

x = mysecret

Leaks mysecret to microarchitecture!

Predict branch taken

7

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

How can I protect my code?

Speculative constant-time

• Hard to reason about

• New speculation mechanisms?

8

We need Secure Speculation for Constant-Time!

Developers should not care about speculations

Hardware shall not speculatively leak secrets

But still be efficient and enable speculation

Hardware defense:
Secure speculation for constant-time!

9

Hardware Secrecy Tracking

10

Software side

• Label secrets

• Constant-time program

Hardware side

• Track security labels

• Secrets do not speculatively
flow to insecure instructions

Illustration with Spectre-v1

Consider idx = len

11

char array[len]

char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

12

Developer marks secretschar array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

13

Developer marks secrets

Speculative execution

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

14

Developer marks secrets

Speculative execution

x = mysecret:secret

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Illustration with Spectre-v1

Consider idx = len

15

char array[len]

secret char mysecret

1: if (idx < len)

2: x = array[idx]

3: leak(x)

Developer marks secrets

Speculative execution

x = mysecret:secret

Speculative execution + secret

=

x not forwarded to leak

How do I know that my defense works?

16

How do I know that my defense works?

17

Challenges

Adapt HW/SW contract framework to account for

• All existing speculation mechanisms (Spectre, LVI)

• Futuristic speculation mechanisms (value prediction)

• Declassification

18

Our contributions

▪ ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets

• Allows for declassification

• Generic: all Spectre variants / LVI

▪ First to consider (Load) Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

▪ Implementation in a RISC-V microarchitecture
• First synthesizable implementation

• Evaluation: hardware cost, performance, annotations
19

ProSpeCT: Generic formal processor model for HST

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

20

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful

predictors

ProSpeCT: Generic formal processor model for HST

All public values are leaked / influence predictions

Semantics of out-of-order speculative processor with HST
→ Abstract microarchitectural context

→ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

21

Constant-time programs (ISA semantics)
do not leak secrets (micro-arch. semantics)

Declassify = write secrets to public memory

→ Beware unintentional declassification

Attacker observations/influence

Generic/Powerful

predictors

Security proof

Load Prediction: Rollback correct executions?

22

secret char mysecret

1: x = load mysecret

2: y = x + 4

Load Prediction: Rollback correct executions?

23

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Load Prediction: Rollback correct executions?

24

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Implicit resolution-based channel!

Rollback to line 1

Resolve prediction?

Commit and goto line 3yes

no

mysecret = 0?

Load Prediction: Rollback correct executions?

25

secret char mysecret

1: x = load mysecret

2: y = x + 4

Predict x = 0

Compute y = 4

Solution: always rollback when value is secret

Rollback to line 1

mysecret = 0?Resolve prediction?

Rollback to line 1yes

no

Implementation

Prototype RISC-V implementation

On top of Proteus modular RISC-V processor

• Branch target prediction

• Conservative approach

• 2 secret regions defined by CSRs

26

Limited Hardware Cost

• LUTs: +17%

• Registers: +6%

• Critical path: +2%

Evaluation

27

4 primitives (HACL*)

• Annotate secret

• Ensure no secrets spilled

• Stack public in 3/4 cases

• ≤1h / primitive

Performance overhead (benchmark from [1])

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

Speculation/Crypto 25/75 50/50 75/25 90/10

Precise (Key) 0% 0% 0% 0%

Conservative (All) 10% 25% 36% 45%

No overhead in software for constant-time code
when secrets are precisely annotated

Conclusion

Software informs hardware about secrets

End-to-end security for constant-time programs

Strong security guarantees

Low overhead
No software overhead for constant-time code

28

Icons made by Freepik, Vectors Market, monkik from www.flaticon.com

github.com/proteus-core/prospect

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://github.com/proteus-core/prospect

A step back

▪ Proteus: extensible RISC-V processor

▪ Security extensions
‒ ProSpeCT
‒ ISA extension for CF balancing/linearization
‒ CHERI
‒ …

RISC-V open standard ISA

→ HW-SW co-design for security

Other relevant projects at

▪ Attacks/Defenses for TEEs ⟹ Jo Van Bulck

▪ Formalization/verification of ISA security guarantees ⟹ Dominique Devriese

Future work

How to ease adoption of HW-SW co-designs?
→ Need infrastructure around HW-SW contracts

▪ Secure compilation/compiler support (LLVM, Jasmin?)

▪ Binary analysis (Binsec/angr)

▪ Validate HW implementation (fuzzing, verification)
⟹Márton Bognár

	Slide 1: ProSpeCT: Provably Secure Speculation for the Constant-Time Policy
	Slide 2: Need to protect against microarchitectural attacks
	Slide 3: Need to protect against microarchitectural attacks
	Slide 4: Easy: constant-time programming!
	Slide 5: Easy: constant-time programming!
	Slide 6: … still vulnerable to Spectre attacks
	Slide 7: … still vulnerable to Spectre attacks
	Slide 8: How can I protect my code?
	Slide 9: We need Secure Speculation for Constant-Time!
	Slide 10: Hardware Secrecy Tracking
	Slide 11: Illustration with Spectre-v1
	Slide 12: Illustration with Spectre-v1
	Slide 13: Illustration with Spectre-v1
	Slide 14: Illustration with Spectre-v1
	Slide 15: Illustration with Spectre-v1
	Slide 16: How do I know that my defense works?
	Slide 17: How do I know that my defense works?
	Slide 18: Challenges
	Slide 19: Our contributions
	Slide 20: ProSpeCT: Generic formal processor model for HST
	Slide 21: ProSpeCT: Generic formal processor model for HST
	Slide 22: Load Prediction: Rollback correct executions?
	Slide 23: Load Prediction: Rollback correct executions?
	Slide 24: Load Prediction: Rollback correct executions?
	Slide 25: Load Prediction: Rollback correct executions?
	Slide 26: Implementation
	Slide 27: Evaluation
	Slide 28: Conclusion
	Slide 29: A step back
	Slide 30: Future work

