ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

November 8t 2022

Under submission

Lesly-Ann Daniel Marton Bognar Job Noorman Sébastien Bardin Tamara Rezk Frank Piessens
KU Leuven KU Leuven KU Leuven CEA List INRIA KU Leuven

Spectre attacks

Speculative out-of-order execution is powerful

Speculation may lead to transient executions
Transient executions are reverted at architectural level

But not the microarchitectural state (e.g. cache)

Spectre attacks (2018)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with microarchitectural attacks

Hardware-Software Contracts

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute "Microsoft Research *Saarland University

%

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

e Secure software design, verification and compilation
* Formally express guarantees of hardware defenses

Hardware-Software Contracts

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
*IMDEA Software Institute "TMicrosoft Research *Saarland University

%

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

*

No hardware defense studied in the paper enables
secure speculation for constant-time programs!

Secure Speculation for Constant-Time?

Constant-time Programming

Protection against (non-transient) microarchitectural attacks
* Used in many cryptographic implementations

* No secret-dependent control flow & memory accesses

Constant-Time in the Spectre Era

* Speculative semantics for software defenses
— Hard to reason about & accommodate new speculation mechanisms?

* Hardware defense: disable speculation -
— Not acceptable ﬂ

Secure Speculation for Constant-Time

Hardware defense

k A 4
Efficient: enables speculation ‘,

Constant-time programs do not leak

Developer can ignore speculation

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)
e Inform hardware of what is secret

 Track secret taint in hardware

ConTEXT: A Generic Approach for Mitigating
Spectre SpectreGuard: An Efficient Data-centric Defense Mechanism

against Spectre Attacks

* Do not leak tainted values during speculation

Michael Schwarz!, Moritz Lipp!, Claudio Canella!, Robert Schilling!?, Florian Kargl!, Daniel Gruss' Jacob Fustos Farzad Farshchi Heechul Yun
!Graz University of Technology 2Know-Center GmbH University of Kansas University of Kansas University of Kansas

Speculative Privacy Tracking (SPT): Leaking Information From
Speculative Execution Without Compromising Privacy

Rutvik Choudhary Jiyong Yu
UIUC, USA UIUC, USA
Christopher W. Fletcher Adam Morrison
UIUC, USA Tel Aviv University, Israel

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)
e Inform hardware of what is secret

 Track secret taint in hardware

\Vg

ConTEXT: A Generic Approach for Mitigating

* Do not leak tainted values during speculation

——Mechanism

Technical implementation details & evaluation
No end-to-end formal security guarantee
for constant-time programs

Rutvih (honadhary by

wchul Yue

bopher W Fletcher Adam \Mowrmw

What we propose

ProSpeCT: Formal processor model with HST
* Generic: wide range of speculation mechanisms

Proof that CT programs do not leak secrets
e All Spectre variants + LVI
* Allows for declassification

First to consider Load Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

Implementation in a RISC-V microarchitecture
* First synthesizable implementation
e Evaluation: hardware cost, performance, annotations

ProSpeCT
Secure Speculation for Constant-Time

llustration with Spectre-v1

Spectre-vl. Exploit branch prediction

char A[16] No defense

char secret C(x
if (1dx < 16) Mispredicted A

X = load A[idx]
leak (x)

X = secret

secret istransiently leaked !

Consider idx = 16 8

11

llustration with Spectre-v1

char A[le] // public memory ProSpeCT
char secret // secret memory Developer annotate secret memory
1f (idx < 16) Mispredicted

x = load A[idx] X = secret:H

leak () secret isnotforwardedto leak

Consider idx = 16

12

Illustration with LVI

LVI. Inject values at faulting loads

char A[16]
char secret
x = load 1dx
y = load A[x]
leak (y)

Akin to Load Value Prediction

No defense

Attackerinjectx = 16

y = secret

secret istransiently leaked!

X

13

Illustration with LVI

char A[l6] // public memory
char secret // secret memory
x = load 1dx

y = load A[x]

leak (y)

Akin to Load Value Prediction

ProSpeCT

Developer annotate secret memory

Attackerinjectx = 16

y = secret:H

secret isnotforwardedto leak

14

Design Choices

Software side Hardware side

* Label secret memory * Track security labels

* Constant-time program » Secrets do not speculatively flow to

insecure instructions

e Secret written to public memory is
declassified Predictions do not leak secrets

Code without secret = free speculation
Constant-time programs = only block mispredictions

15

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

d P declassification trace
(Cl, ,u) ? (a) ,Ll) microarchitectural context
architectural state

Abstract microarchitectural context u Observations of attacker
+ Functions update, predict, next Influence of attacker

At each step: 1 is updated with all public values
— predictions can depend on any public value

16

Secure Speculation for Constant-Time Policy

Security (no decl). For all constant-time program (architectural semantics)
if ag —public ap and (ag, 1) =" (ay, py,)

then (ag, 1) =" (ap, 1y) and p, =y,

o

‘Architectura/ semantics = hardware software security contract ‘@

Secure Speculation for Constant-Time Policy

Security (decl). For all constant-time program up to declassification

if ag —public ap and (ay, .u) —" (an, ty)

then (ao» ,Ll), d oh (an; .un) and Hn = .un

o

‘Declassify ciphertext while still protecting plaintext

18

Load Prediction: Rollback correct executions?

char secret // secret memory

X = load secret
y = x + 4
Fetch Predict 0 Resolve prediction
X = load secret x = 0 x = 0 .. :
cecret—=0 Implicit resolution-
y = x + 4 y = 4 y = 4 based channel
x = load secret x = 0 x = 1 Commit / Rollback
secret=1 . .
vy = x + 4 y = 4 can be distinguished

19

Load Prediction: Rollback correct executions?

char secret // secret memory

xXx = load secret
y = x + 4
Fetch Predict 0 Resolve prediction
x = load secret x = 0 x = 0:H
secret=0
y = x + 4 y = 4 Always rollback when
actual value is secret
x = load secret x = 0 x = 1:H
secret=1
y = xXx + 4 y = 4

20

Implementation and Evaluation

21

Implementation

Prototype Risc-V implementation
* On top of Proteus modular RiSC-V processor
* Will be open-sourced

* Limitation
* Only branch prediction

e Secrets not forwarded at all during speculation (conservative)

22

Evaluation

Synthesized on FPGA

Preliminary Evaluation
— LUTs: +9.6%

e Hardware cost — Register: +4.8%
— Critical path: +3.3%

* Labelling secrets

4 primitives (HACL*)
Runtime overhead — Annotate public/secret
— Ensure no secret spilled

— Stack public in 3 cases

— Easy: <1h/primitive

23

Runtime Overhead

Benchmark [1] spec/crypto 25/75 50/50 75/25 90/10

e Amount of secret

e Speculation-heavy public Secret 100%
computations / crypto Al 109% 125% 136% 145%

None 100% 100% 100% 100%
100% 100% 100%

Conclusion

Results similar to [1]
Low overhead when secret annotation is precise and restricted part of code
compute on secrets

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019
24

Conclusion

Hardware Secrecy Tracking

|_ Software informs hardware about secret

Strong security guarantees
ProSpeCT = end-to-end security for constant-time programs

Low overhead
ProSpeCT = no runtime overhead on public data

25

Credit

Icons made by Freepik
from www.flaticon.com

—gl

Diamondicons created by
Vectors Market — Flaticon
www.flaticon.com/free-
icons/diamond

v

Hard work icon created by
monkik — Flaticon
www.flaticon.com/free-

icons/hard-work

26

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.flaticon.com/free-icons/hard-work
http://www.flaticon.com/free-icons/diamond

Backup

Future Work

Formal model

e Express details of existing HST defenses in our model

Compiler-support

e Separate secret from public memory

e Ensure no unintentional declassification

Validate RISC-V implementation
* Contract-based CPU testing (e.g., Revizor, Scam-V)?

* Hardware-fuzzing / Model checking?

28

Secure Speculation for Constant-Time Policy

Security without declassification:

If program is constant-time (sequential semantics), then secrets do not
leak to 1 in our hardware (speculative) semantics

Security with declassification

If program is constant-time up to declassification (sequential semantics),
secrets do not leak to 11 (speculative semantics).

29

