
ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

Lesly-Ann Daniel

KU Leuven

Marton Bognar

KU Leuven

Job Noorman

KU Leuven

November 8th 2022

Tamara Rezk

INRIA

Sébastien Bardin

CEA List

Frank Piessens

KU Leuven

Under submission

Spectre attacks

2

Spectre attacks (2018)

• Speculative out-of-order execution is powerful

• Speculation may lead to transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with microarchitectural attacks

Hardware-Software Contracts

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

• Secure software design, verification and compilation
• Formally express guarantees of hardware defenses

Hardware-Software Contracts

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

No hardware defense studied in the paper enables
secure speculation for constant-time programs!

Secure Speculation for Constant-Time?

Constant-time Programming

Protection against (non-transient) microarchitectural attacks

• Used in many cryptographic implementations

• No secret-dependent control flow & memory accesses

5

Constant-Time in the Spectre Era

• Speculative semantics for software defenses
→ Hard to reason about & accommodate new speculation mechanisms?

• Hardware defense: disable speculation
→ Not acceptable

Secure Speculation for Constant-Time

6

Hardware defense

Efficient: enables speculation

Constant-time programs do not leak

Developer can ignore speculation

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Do not leak tainted values during speculation

7

Hardware Secrecy Tracking

8

Technical implementation details & evaluation
No end-to-end formal security guarantee

for constant-time programs

Hardware Secrecy Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Do not leak tainted values during speculation

What we propose

ProSpeCT: Formal processor model with HST
• Generic: wide range of speculation mechanisms

Proof that CT programs do not leak secrets
• All Spectre variants + LVI
• Allows for declassification

First to consider Load Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

Implementation in a RISC-V microarchitecture
• First synthesizable implementation
• Evaluation: hardware cost, performance, annotations

9

ProSpeCT
Secure Speculation for Constant-Time

10

Illustration with Spectre-v1

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

11

No defense

x = secret

secret is transiently leaked !

Consider idx = 16

Mispredicted

Spectre-v1. Exploit branch prediction

Illustration with Spectre-v1

char A[16] // public memory

char secret // secret memory

if (idx < 16)

x = load A[idx]

leak(x)

12

ProSpeCT

secret is not forwarded to leak

Developer annotate secret memory

Consider idx = 16

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

x = secret:H

Mispredicted

Illustration with LVI

char A[16]

char secret

x = load idx

y = load A[x]

leak(y)

13

No defense

y = secret

secret is transiently leaked!

Attacker inject x = 16

LVI. Inject values at faulting loads

Akin to Load Value Prediction

Illustration with LVI

14

char A[16] // public memory

char secret // secret memory

x = load idx

y = load A[x]

leak(y)

y = secret:H

secret is not forwarded to leak

Attacker inject x = 16

ProSpeCT

Akin to Load Value Prediction

Developer annotate secret memory

Design Choices

15

Software side

• Label secret memory

• Constant-time program

• Secret written to public memory is
declassified

Hardware side

• Track security labels

• Secrets do not speculatively flow to
insecure instructions

• Predictions do not leak secrets

Code without secret ⟹ free speculation
Constant-time programs ⟹ only block mispredictions

ProSpeCT: Generic formal processor model for HST

Abstract microarchitectural context 𝜇

+ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

16

Observations of attacker
Influence of attacker{

At each step: 𝜇 is updated with all public values
→ predictions can depend on any public value

𝑎, 𝜇 ⟶ (𝑎′ , 𝜇′)

Semantics of out-of-order speculative processor with HST

architectural state

microarchitectural context
𝑑 declassification trace

Secure Speculation for Constant-Time Policy

Security (no decl). For all constant-time program (architectural semantics)

17

then 𝑎0
′ , 𝜇 ⟶𝑛 𝑎𝑛

′ , 𝜇𝑛
′ and 𝜇𝑛 = 𝜇𝑛

′

if 𝑎0 =𝑝𝑢𝑏𝑙𝑖𝑐 𝑎0
′ and 𝑎0 , 𝜇 ⟶𝑛 (𝑎𝑛 , 𝜇𝑛)

Architectural semantics = hardware software security contract

Secure Speculation for Constant-Time Policy

18

Security (decl). For all constant-time program up to declassification

then 𝑎0
′ , 𝜇 , 𝑑 ↪𝑛 𝑎𝑛

′ , 𝜇𝑛
′ and 𝜇𝑛 = 𝜇𝑛

′

if 𝑎0 =𝑝𝑢𝑏𝑙𝑖𝑐 𝑎0
′ and 𝑎0 , 𝜇 ⟶𝑛 (𝑎𝑛 , 𝜇𝑛)

Declassify ciphertext while still protecting plaintext

𝑑

Load Prediction: Rollback correct executions?

19

char secret // secret memory

x = load secret

y = x + 4

x = load secret

y = x + 4

x = 0

y = 4

x = load secret

y = x + 4

x = 0

y = 4

x = 0

y = 4

x = 1

Implicit resolution-
based channel

Fetch Predict 0 Resolve prediction

secret=0

secret=1
Commit / Rollback

can be distinguished

Load Prediction: Rollback correct executions?

20

char secret // secret memory

x = load secret

y = x + 4

x = load secret

y = x + 4

x = 0

y = 4

x = load secret

y = x + 4

x = 0

y = 4

x = 0:H

x = 1:H

Fetch Predict 0 Resolve prediction

secret=0

secret=1

Always rollback when
actual value is secret

Implementation and Evaluation

21

Implementation

Prototype Risc-V implementation

• On top of Proteus modular RiSC-V processor

• Will be open-sourced

• Limitation

• Only branch prediction

• Secrets not forwarded at all during speculation (conservative)

22

Evaluation

23

Preliminary Evaluation

• Hardware cost

• Labelling secrets

• Runtime overhead

Synthesized on FPGA

‒ LUTs: +9.6%

‒ Register: +4.8%

‒ Critical path: +3.3%

4 primitives (HACL*)

‒ Annotate public/secret

‒ Ensure no secret spilled

‒ Stack public in 3 cases

‒ Easy: ≤1h/primitive

Runtime Overhead

24

Benchmark [1]

• Amount of secret

• Speculation-heavy public
computations / crypto

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

spec/crypto 25/75 50/50 75/25 90/10

None 100% 100% 100% 100%

Secret 100% 100% 100% 100%

All 109% 125% 136% 145%

Conclusion

Results similar to [1]

Low overhead when secret annotation is precise and restricted part of code
compute on secrets

Conclusion

Software informs hardware about secret

25

Hardware Secrecy Tracking

ProSpeCT ⟹ end-to-end security for constant-time programs

Strong security guarantees

Low overhead
ProSpeCT ⟹ no runtime overhead for constant-time codeno runtime overhead on public data

Credit

26

Icons made by Freepik
from www.flaticon.com

Hard work icon created by
monkik – Flaticon
www.flaticon.com/free-
icons/hard-work

Diamond icons created by
Vectors Market – Flaticon
www.flaticon.com/free-
icons/diamond

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.flaticon.com/free-icons/hard-work
http://www.flaticon.com/free-icons/diamond

Backup

27

Future Work

Formal model

28

• Express details of existing HST defenses in our model

• Contract-based CPU testing (e.g., Revizor, Scam-V)?

• Hardware-fuzzing / Model checking?

• Separate secret from public memory

• Ensure no unintentional declassification

Compiler-support

Validate RISC-V implementation

Secure Speculation for Constant-Time Policy

Security without declassification:

If program is constant-time (sequential semantics), then secrets do not
leak to 𝜇 in our hardware (speculative) semantics

29

Security with declassification

If program is constant-time up to declassification (sequential semantics),

secrets do not leak to 𝜇 (speculative semantics).

