
Towards Secure Speculation 
for the Constant-Time Policy

Lesly-Ann Daniel

KU Leuven

Marton Bognar

KU Leuven

Job Noorman

KU Leuven

Short Talk @ 2022 SILM workshop

June 6th 2022

Tamara Rezk

INRIA

Sébastien Bardin

CEA List

Frank Piessens

KU Leuven

Work in Progress



Spectre Attacks & Hardware-Software Contracts

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

• Secure software design, verification and compilation
• Formally express guarantees of hardware defenses



Spectre Attacks & Hardware-Software Contracts

Formally reason about defenses & Enable hardware-software co-design

Foundational Framework

No hardware defense studied in the paper enables
secure speculation for constant-time policy!



Secure Speculation for Constant-Time?

Constant-time Programming

Protection against (non-transient) microarchitectural attacks

• Used in many cryptographic implementations

• No secret-dependent control flow & memory accesses

4

Constant-Time in the Spectre Era

• Speculative semantics for software defenses & verification
→ Hard to reason about & accommodate new speculation mechanisms?

• Hardware defense: disable speculation
→ Not acceptable



Secure Speculation for Constant-Time?

Constant-time Programming

Protection against (non-transient) microarchitectural attacks

• Used in many cryptographic implementations

• No secret-dependent control flow & memory accesses

5

?
Secure Speculation for Constant-Time:
Efficient hardware defense → off-the-shelf 
constant-time programs do not leak secrets



Secure Speculation for Constant-Time
via Hardware Secret-Tracking

Hardware Secret-Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Hardware do not leak tainted values during speculation

6



Secure Speculation for Constant-Time
via Hardware Secret-Tracking

Hardware Secret-Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Hardware do not leak tainted values during speculation

7

Technical implementation details & evaluation
But still no end-to-end formal security guarantee

for constant-time programs



What we propose

• Formal framework for hardware secret-tracking
• Wide range of speculation mechanisms

• Generalizes prior HST mechanisms

• Proof that CT programs do not leak secrets during speculations
• All Spectre variants + LVI

• Allows for declassification

• Implementation in a RISC-V microarchitecture
• First synthesizable implementation

• Evaluation of the hardware costs

8



Future Work

• Hardware-software contract? 

• Compiler-support?

• Validating our RISC-V implementation

9

→ Declassification?
→ Policy-aware contract?

→ Contract-based CPU testing (e.g. Revizor, Scam-V)? 
→ Hardware-fuzzing?
→ Model checking?

→ Separate secret from public memory
→ Ensure no unintentional declassification

HST



Future Work

• Hardware-software contract? 

• Compiler-support?

• Validating our RISC-V implementation

10

→ Declassification?
→ Policy-aware contract?

→ Separate secret from public memory
→ Ensure no unintentional declassification

Thanks for your attention
Any question, feedback, suggestion is welcome 

HST



Credit

11

Icons made by Freepik
from www.flaticon.com

Hard work icon created by 
monkik – Flaticon
www.flaticon.com/free-
icons/hard-work

Diamond icons created by 
Vectors Market – Flaticon
www.flaticon.com/free-
icons/diamond

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.flaticon.com/free-icons/hard-work
http://www.flaticon.com/free-icons/diamond

