
Symbolic Binary-Level Code Analysis for Security

Application to the Detection of Microarchitectural Attacks

in Cryptographic Code

Supervised by:

- Sébastien Bardin, CEA List

- Tamara Rezk, INRIA

PhD defense of Lesly-Ann Daniel

CEA List and Université Côte d’Azur

Programs manipulate secret data

2

Critical software is prevalent:
• Secure communications
• Online banking
• Protect health data

Their security relies on cryptography:
• Mathematical guarantees
• Verified implementations (no bugs, functional)
• But what about their execution in the physical world?

Computations have physical side effects

3

Computations have physical side effects

4

!

These side-effects can be exploited via side-channel attacks to recover secret data

Computations have physical side effects

5

!

Timing and microarchitectural attacks can be run remotely [1]

[1] Remote Timing Attacks Are Practical, David Brumley and Dan Boneh at USENIX 2003

Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:

Execution time & microarchitectural state depends on secret data

First timing attack in 1996 by Paul Kocher: full recovery of RSA encryption key

3 s

9 s

9 s

6

Protect software with constant-time programming

7

?
?

?

Constant-Time. Execution time / changes to microarchitectural
state must be independent from secret input

Already used in many cryptographic implementations

if secret

then foo()

else bar()

What can influence execution time/microarchitecture?

secret→

→ secret

Control Flow

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret

x = buf[secret]

Cache

Control Flow

What can influence execution time/microarchitecture?

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

What can influence execution time/microarchitecture?

Protect software with constant-time programming

11

?
?

?

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Control-flow
Memory accesses

Control-flow
Memory accesses

Protect software with constant-time programming

12

?
?

?

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Property relating 2 execution traces (2-hypersafety)

Control-flow
Memory accesses

Control-flow
Memory accesses

Constant-time is not easy to implement

13

clang-3.0 –O0

Compilers can break constant-time!

14

clang-3.0 –O3

Spectre haunting our code

15

Spectre attacks (2018)

• Exploit speculations in processors

• Affect almost all processors

• Speculation may lead to transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with cache attacks

Not easy to write constant-time programs:
• Control-flow

→ First timing attacks by Paul Kocher, 1996

• Memory accesses
→ Cache attacks, 2005

• Processors optimizations
→ Spectre attacks, 2018

Need automated verification for constant-time

16

Efficient automated verification tools for constant-time
at binary-level & modelling processor speculations

Human

Compiler

Hardware

Multiple failure pointsConstant time is crucial for security

Automated program verification

17

Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs
• Always terminate
• Be fully automatic

Not possible:
Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

}

Bug-Finding

Verification

Verification tool

Automated program verification

18

Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs up to a given bound
• Always terminate
• Be fully automatic

Bug-Finding

Bounded-
Verification

Verification tool

Symbolic Execution (SE)

Contributions

• Optimizations: symbolic execution for constant-time, secret-erasure,
detection of Spectre vulnerabilities at binary level

• Implementation into two open source tools

• Application to cryptographic primitives
• Violations introduced by compilers from verified llvm code

• Spectre-PHT defenses can be bypassed using Spectre-STL

19

https://github.com/binsec/hauntedhttps://github.com/binsec/rel

https://github.com/binsec/haunted
https://github.com/binsec/rel

20

Binsec/Rel:
Efficient constant-time analysis at binary-level

Haunted RelSE: detect Spectre vulnerabilities

Background:
Efficient SE for pairs of traces with Relational SE

Symbolic Execution [1,2]

21

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

22

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

p ↦ 𝑝
s ↦ 𝑠

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

23

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic Execution [1,2]

24

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic Execution [1,2]

25

p = 6
s = 8

Can error be reached?

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

SMT-Solver

Symbolic store Path predicate

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

SE for constant-time via self-composition [1]

26

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

Can c = 0 depend on s?

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004

SE for constant-time via self-composition [1]

27

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can c = 0 depend on s?

SMT-Solver

p = 6, s = 8
p’ = 6, s’=1

Self-composition: F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004

SE for constant-time via self-composition

Limitations

• Whole formula is duplicated

• High number of insecurity queries to the solver

28

F(𝑝, 𝑠, 𝑝′, 𝑠′)

Relational Symbolic Execution to overcome these limitation

Better approach: Relational SE [1,2]

29

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍

Better approach: Relational SE [1,2]

30

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

𝑐 = 𝑝 × 𝑠 − 48

SMT-SolverRelational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48

p = 6
s = 8 s’=1

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍

∧ c = 0 ≠ 𝑐′ = 0

Better approach: Relational SE [1,2]

31

foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >

Better approach: Relational SE [1,2]

32

foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >

Sharing in SE 👍

Secret tracking 👍
Spared query !

Limitations of RelSE

33

Problem:

• Memory = symbolic array < 𝜇 | 𝜇′ >

• Duplicate load operations < 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

• Many loads in binary code 

RelSE is inefficient at binary-level
RelSE cannot efficiently model speculations

Binsec/Rel:
Efficient constant-time analysis at binary-level

34

PART 1

Many verification tools for constant-time but…

35

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓ + Full proof

C/LLVM analysis might
miss constant-time

violations 

Many verification tools for constant-time but…

36

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓

Binsec/Rel Binary ✓ ✓

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

+ Full proof

C/LLVM analysis might
miss constant-time

violations 

Challenges SE for constant-time analysis

37

Binary-analysis

Property of 2 executions Not necessarily preserved by compilers

Reason explicitly about memory

Does not scale 

RelSE
SE for pairs of traces with sharing

Binary-level RelSE

38

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

Binary-level RelSE

39

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

Binary-level RelSE

40

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

Dedicated optimizations for constant-time

41

Untainting

Use solver response to transform
< 𝑎 | 𝑎′ > to < 𝑎 >

• Better sharing

• Better secret tracking

Fault-Packing

Pack queries along basic-blocks

• Reduces number of queries

• Useful for constant-time analysis
(many queries)

Formalization and theorems

42

Theorem: Correct for Bug-Finding

Theorem: Correct for Bounded-Verification

Formal proofs

+ Generalization to other leakage models

https://github.com/binsec/rel

Experimental evaluation

43

https://github.com/binsec/rel

Ablation study: Binsec/Rel vs. vanilla RelSE

44

Binsec/Rel 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

Preservation of constant-time by compilers

45
[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• gcc –O0 can introduce violations in programs

• clang backend passes introduce violations in programs
deemed secure by constant-time verification tools for llvm

29 new functions & 2 gcc compilers + clang v7.1 & ARM binaries

• + other fun facts in thesis

408 binaries

Total

Haunted RelSE: detect Spectre vulnerabilities

46

PART 2

Spectre-PHT

47

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-PHT

48

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-STL

49

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

Spectre-STL

50

Sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)

Spectre-STL

51

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

leak(s)leak(p)

Transient Executions+

Spectre-STL

52

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

leak(s)leak(p) leak(init_mem[a])

Sequential execution Transient Executions+

Not easy to write constant-time programs

• Sequence of instructions executed
→ First timing attacks by Paul Kocher, 1996

• Memory accesses
→ Cache attacks, 2005

• Processors optimizations
→ Spectre attacks, 2018

Constant-time verification in the Spectre era

53

We need efficient automated verification tools that take
into account speculation mechanisms in processors

Human

Compiler

Hardware

Multiple failure points

Modelling speculative semantics

54

Litmus tests (328 instrutions):

• Sequential semantics
→ 14 paths

• Speculative semantics (Spectre-STL)
→ 37M paths

Modelling all transient paths explicitly is intractable

No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss violations 

55

No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Binsec/Haunted Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss violations 

56

Haunted RelSE

57

Explicit RelSE for Spectre PHT

5858

Symbolic execution with sequential semantics

if c

then foo

else bar
c

foo bar

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Explicit RelSE for Spectre PHT

5959

Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 sequential branches
• 2 transient branches
On sequential and transient branches:

• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)Speculation depth 𝛿
of the condition

Haunted RelSE for Spectre PHT

6060

Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = sequential ∨ transient
• Add constraint to invalidate transient

path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Speculation depth 𝛿
of the condition

Dynamic speculation depth

Dynamic speculation depth:

Speculate on conditions only when they depend on memory [1]

→ Model processor more precisely

61
[1] Abstract Interpretation under Speculative Execution, Meng Wu and Chao Wang, PLDI 2019

Most tools:

Speculate until maximum speculation depth Δ

But what does it means to depend on the memory ?

Dynamic speculation depth

62
[1] Abstract Interpretation under Speculative Execution, Meng Wu and Chao Wang, PLDI 2019

x = load a

[…]

[…]

[…]

Current depth of SE: 𝑑

Retirement depth of load: 𝑑 + Δ
Maximum speculation depth = Δ

Dynamic speculation depth

63
[1] Abstract Interpretation under Speculative Execution, Meng Wu and Chao Wang, PLDI 2019

x = load a

[…]

[…]

[…]

x = 𝑥𝑑+Δ

Current depth of SE: 𝑑

Memory dependency depth of x

Retirement depth of load: 𝑑 + Δ

x depends on the memory

x does not depend on the memory

Dynamic speculation depth

64
[1] Abstract Interpretation under Speculative Execution, Meng Wu and Chao Wang, PLDI 2019

if c > 0 and c = 𝑐𝑑
′

in SE

𝜋 ∶= 𝜋 ∧ 𝑐 > 0
when 𝑑′ ≤ current depth

Stop speculation

Memory dependency depth
of c has been reached

Speculation depth of conditions = memory dependency depth

store a s

store a p

store b q

v = load a

Haunted vs. Explicit RelSE for Spectre-STL

65

Spectre-STL.
Model multiple load/store
interleavings

v ↦ p

v ↦ p

v ↦ s

+ 3 extra transient paths
1 sequential path

v ↦ 𝛼

Explicit RelSE Haunted RelSE

1 speculative path

𝛽0 = 𝑓𝑎𝑙𝑠𝑒

𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

Instead of forking SE:

• Prune redundant values

• Encode values in 1 path

+ Formal proof:
Equivalence Haunted/Explicit

Experimental evaluation

66

https://github.com/binsec/haunted

https://github.com/binsec/haunted

Experimental evaluation

67

Benchmark.

Litmus tests: Spectre-PHT = Paul Kocher standard, Spectre-STL = new set of litmus tests

Cryptographic primitives: tea, donna, Libsodium secretbox, OpenSSL ssl3-digest-record & mee-cdc-decrypt

Effective on real code?

→ Spectre-PHT & Spectre-STL 

Haunted RelSE vs. Explicit RelSE?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Paths: 93M → 42
Coverage: 2k → 17k
Timeouts: 15 → 8
Bugs: 22 → 148

Litmus:
Paths: 1546 → 370
Time: 3h → 15s
Libsodium + OpenSSL:
Coverage: 2273 → 8634
Total:
Timeouts: 5 → 1

PHT STL

Benchmark

Weakness of index-masking countermeasure
+ Position independent code

68

Weakness of Spectre-PHT countermeasure

69

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

70

Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

71

Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Weakness of Spectre-PHT countermeasure

72

Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index in a register

Verified mitigations:

Conclusion

73

Conclusion

74

• Haunted RelSE optimization for
modeling speculative semantics

• Binsec/Haunted: binary-level tool to
detect Spectre-PHT & STL

• New Spectre-STL violations with
index masking and PIC

https://github.com/binsec/haunted
https://github.com/binsec/rel

• Dedicated optimizations for RelSE at
binary-level

• Binsec/Rel: bug-finding & bounded-verif.
of constant-time & secret-erasure at
binary-level

• Analysis of crypto libraries at binary-level:
constant-time llvm may yield vuln. binary

https://github.com/binsec/haunted
https://github.com/binsec/rel

Future work

Extensible framework: check property preservation by compilers:

New countermeasures (lfence, speculative load hardening, Spectre RSB/BTB)

Exploitability: Too conservative property? load ebp-4 cannot bypass store ebp-4

General noninterference: challenge → model diverging paths

Hardware extension for secure speculation:

Formal design and security proof of a hardware monitor

75

Publications

76

Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

Lesly-Ann Daniel, Sébastien Bardin, Tamara Rezk

IEEE Symposium on Security and Privacy (SP), 2020

Hunting the Haunter—Efficient Relational Symbolic Execution for Spectre with Haunted RelSE

Lesly-Ann Daniel, Sébastien Bardin, Tamara Rezk

Network and Distributed System Security Symposium (NDSS), 2021

Binsec/Rel: Symbolic Binary Analyzer for Security with Applications to Constant-Time and Secret-Erasure

Lesly-Ann Daniel, Sébastien Bardin, Tamara Rezk

[Major revision] ACM Transactions on Privacy and Security (TOPS), 2021

Reflections on the Experimental Evaluation of a Binary-Level Symbolic Analyzer for Spectre

Lesly-Ann Daniel, Sébastien Bardin, Tamara Rezk

[Under review] Learning from Authoritative Security Experiments Results (Proceedings LASER workshop), 2021

Backup

77

Beyond Constant-Time

78

Secret-erasure

79

Secret-erasure

80

• Crucial for cryptographic code
• Property of 2 executions
• Not always preserved by compilers

gcc –O2
Dead store elimination pass

removes memset call

Generalizing Binary-level RelSE

81

• Binary-level RelSE parametric in the leakage model
→ Symbolic leakage predicate instantiated according to leakage model

→ For IF properties restricting to pairs of traces following same path

• New leakage model + property for capturing secret-erasure
→ Leaks value of all store operations that are not overwritten
→ Forbids secret dependent control-flow

• Adaptation of Binsec/Rel to secret-erasure

Application: Secret-Erasure

82

• We analyze 17 scrubbing functions

• 5 versions of clang & 5 versions of gcc

• 4 optimization levels

̶ Dedicated secure scrubbing functions (e.g. memset_s) are secure
(but not always available)

̶ Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -O2 and gcc -O3

Easilly extensible with new compilers and new scrubbing functions

New framework to check secret-erasure

680 binaries - 1’20

Total

Haunted RelSE for Spectre-STL

83

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

84

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

85

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

86

Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 sequential path

Redundant case
Can be eliminated with

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Explicit RelSE for Spectre-STL

87

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Experimental evaluation: Binsec/Haunted

88

Haunted vs. Explicit for Spectre-PHT

Tea and donna (10 programs). No difference between Explicit and Haunted ≈

89

Paths Time Timeout Bugs

Explicit 1546 ≈3h 2 21

Haunted 370 15s 0 22

Libsodium & OpenSSL (3 programs)

X86 Instr. Time Timeout Bugs

Explicit 2273 18h 3 43

Haunted 8634 ≈8h 1 47

Take away, Haunted RelSE vs Explicit RelSE.

• At worse: no overhead compared to Explicit ≈
• At best: faster, more coverage, less timeouts ↗

Litmus tests (32 programs) ↗ ↗

Haunted vs. Explicit for Spectre-STL

90

Paths X86 Ins. Time Timeouts Bugs Secure Insecure

Explicit 93M 2k 30h 15 22 3/4 13/23

Haunted 42 17k 24h 8 148 4/4 23/23

• Avoids paths explosion
• More unique instruction explored
• Faster

• Less timeouts
• More bugs found
• More programs proven secure / insecure

Take away, Haunted RelSE vs Explicit RelSE.
Always wins ! ↗

Comparison Binsec/Haunted against
Pitchfork & KLEESpectre

91

KLEESpectre Pitchfork

Target: LLVM

Spectre-PHT: Explicit

• Litmus tests:  (240× slower)
• Tea & donna:  (≈equivalent)

Target: Binary

Spectre-PHT: Optims

• Litmus tests: (≈equivalent)
• Tea & donna:  (50× slower & TO)

Spectre-STL: Explicit

• Litmus tests:  6/10 TO (vs. 0 TO)
• Tea & donna:  10/10 TO (vs. 5 TO + 99 vulns)

Spectre-PHT: ≈ or ↗
Spectre-STL: always ↗

Take away

Vulnerability introduced by PIC

92

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

93

get

)

eax = current location

load current location from stack

eax = global pointer

edx = global variable

current location pushed on stack at call

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

94

get

current location pushed on stack at call

load bypasses prior store

)

eax = any value

load data from arbitrary @
… leak edx

