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Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key
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Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input
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Constant-Time. Execution time is independent from secret input

— Control-flow
— Memory accesses
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Property relating 2 execution traces (2-hypersafety)




Problem: Need Automated Verif.

Execution time is not easy to determine Multiple failure points

* Sequence of instructions executed

* Mlemory accesses (Cache attacks, 2005)
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Compiler can introduce bugs [1]!
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[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 .



Problem: Need Automated Verif.

Execution time is not easy to determine Multiple failure points
* Sequence of instructions executed |
* Mlemory accesses (Cache attacks, 2005)
Compiler can introduce bugs [1]!
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Not easy to write constant-time programs
We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 .



Challenges for CT analysis

Property of 2 executions Not necessarily preserved by
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—> Efficiently model pairs of executions = Binary-analysis
Standard tools do not apply Reason explicitly about memory
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Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

XY compilers N
Bl B
ﬁ.ﬁ 3
K) ) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis

Standard tools do not apply Reason explicitly about memory
RelSE Binary-level SE
SE for pairs of traces with sharing & BINSEC

Does not scale & (whole memory is duplicated, no sharing)
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Contributions

0 1

B i n SeC/Rel O https://github.com/binsec/rel

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

From OpenSSL, BearSSL,

Dedicated optimizations for BINSEC/REL libsodium
RelSE at binary-level: First efficient tool 296 verified binaries
maximize sharing in memory for CT analysis 3 new bugs introduced by
(x700 speedup) at binary-level compilers from verified source

Out of reach of LLVM verification tools
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» Relational Symbolic Execution (RelSE)

» Our Approach: Binary-level RelSE



Relational Symbolic Execution [1,2]
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Relational Symbolic Execution [1,2]
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Relational Symbolic Execution [1,2]

e )

p P»P<p>
3 l—><S|S’> ) Formula:
mem < u|p > F(p,s,s’)
a P»<a> —
/ Sharing in SE &

Secret tracking w
Question: Can a depend on secret s ?

By definition, a does not depend on secrets o
We spare a call to the solver !

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 15



Problem with RelSE at binary-level

Problem: Sharing fails at binary-level
* Memory is represented as a symbolicarray < u | i’ >

 Duplicated at the beginning of SE
* Duplicate all load operations

In our experiments, we show that standard RelSE
does not scale on binary code

20



Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018 21



Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018

Memory as the history of stores.

init_ mem

v/
esp —4|<p>

esp—8|<s|s >
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Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

[1] “Arrays Made Simpler”, Farinier et al. 2018 23



Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

+ simplifications for efficient syntactic disequality checks

[1] “Arrays Made Simpler”, Farinier et al. 2018 24



Experimental evaluation
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Experimental evaluation

wmBinsec/Rel

https://github.com/binsec/rel

 Utility functions from
OpenSSL & HACL*

Cyposreshicprimitives

* libsodium
RQ1. Effective on real crypto? e BearSSL
— 338 programs: 54M unrolled instrin 2h * OpenSSL
RQ2. Comparison vs. RelSE * HACL*

- 700X faster + More in paper
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https://github.com/binsec/rel

RQ1: Effectiveness

Programs Static Instr. Unrolled Instr. Time Success
Secure (Bounded-Verif) 296 64k 23M 46min 100%
Insecure (Bug-Finding) 42 6k 22k 40min 100%

e First automatic CT analysis of these programs at binary-level
e Can find vulnerabilities in binaries compiled from CT source
* Found 3 bugs that slipped through prior LLVM analysis
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RQ2: Comparison with RelSE

Instructions Instructions / sec Time Timeouts
RelSE 349k 6.2 15h47 13
Binsec/Rel 23M 4429 1h26 0

Binsec/Haunted 700 faster than RelSE
No timeouts even on large programs (e.g. donna)
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Conclusion
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Conclusion
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After Binsec/Rel

https://github.com/binsec/rel Detection of Spectre attacks
Binsec/*)- Q
: o : “Haunte%? bt
* Dedicated optimizations for RelSE at binary-level
— Sharing for scaling https://github.com/binsec/haunted
* Binsec/Rel, binary-level tool for constant-time
analysis New framework to verify
 Verification of crypto libraries at binary-level + secret-erasure (WIP)

new bugs introduced by compilers out-of reach
of LLVM verification

I’'m also looking for a postdoc for next year © !
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