Efficient Relational Symbolic Execution for
Constant-Time at Binary-Level with Binsec/Rel

2nd International KLEE Workshop on Symbolic Execution,
10-11 June, 2021

Published at IEEE Symposium on Security and Privacy 2020

Lesly-Ann Daniel Sébastien Bardin Tamara Rezk

CEA, LIST, Université Paris-Saclay CEA, LIST, Université Paris-Saclay Inria
France France France

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Q> [
Q> ©

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

@
|

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

— Control-flow
— Memory accesses

Q\>)

—_—

K)E‘T)

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

— Control-flow
— Memory accesses

Q\>)

—_—

K)E‘T)

Property relating 2 execution traces (2-hypersafety)

Problem: Need Automated Verif.

Execution time is not easy to determine Multiple failure points

* Sequence of instructions executed

* Mlemory accesses (Cache attacks, 2005)

Problem: Need Automated Verif.

Execution time is not easy to determine Multiple failure points
* Sequence of instructions executed |
Compiler can introduce bugs [1]!

* Mlemory accesses (Cache attacks, 2005)
LOL
BB
) *
P4

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 .

Problem: Need Automated Verif.

Execution time is not easy to determine Multiple failure points
* Sequence of instructions executed |
* Mlemory accesses (Cache attacks, 2005)
Compiler can introduce bugs [1]!
BB
) *
4

Not easy to write constant-time programs
We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 .

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

XY compilers N
Bl B
ﬁ.ﬁ 3
K)) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis
Standard tools do not apply Reason explicitly about memory

10

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

X1 compilers N
o &2 B
2 K
K)) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis
Standard tools do not apply Reason explicitly about memory

RelSE Binary-level SE
SE for pairs of traces with sharing s BINSEC

11

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

XY compilers N
Bl B
ﬁ.ﬁ 3
K)) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis

Standard tools do not apply Reason explicitly about memory
RelSE Binary-level SE
SE for pairs of traces with sharing & BINSEC

Does not scale & (whole memory is duplicated, no sharing)

12

Contributions

0 1

B i n SeC/Rel O https://github.com/binsec/rel

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

From OpenSSL, BearSSL,

Dedicated optimizations for BINSEC/REL libsodium
RelSE at binary-level: First efficient tool 296 verified binaries
maximize sharing in memory for CT analysis 3 new bugs introduced by
(x700 speedup) at binary-level compilers from verified source

Out of reach of LLVM verification tools

13

https://github.com/binsec/rel

» Relational Symbolic Execution (RelSE)

» Our Approach: Binary-level RelSE

Relational Symbolic Execution [1,2]

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 T

Relational Symbolic Execution [1,2]

e)

p P»P<p>

s »PZ<s|s >
mem < u|p >

a »<ala >

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 16

Relational Symbolic Execution [1,2]

e)

p P»P<p>
S l—><S|S’>) Formula:
mem < u|p > F(p,s,s’)
a »p<ala 3>>——
Sharing in SE &

Secret tracking w

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 1

Relational Symbolic Execution [1,2]

e)

Public:
ublic p; I
Secret: S e ! Formula:
‘l) S |—><S|S’>) ’
mem S < u|u > F(p,s,s’)
a »p<ala 3>>——
Sharing in SE &

Secret tracking w

Question: Can a depend on secret s ?
Formula with sharing: Solver) UNSAT °

F(p,s,s)Na#a > > SAT #

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 15

Relational Symbolic Execution [1,2]

e)

p P»P<p>
3 l—><S|S’>) Formula:
mem < u|p > F(p,s,s’)
a P»<a> —
/ Sharing in SE &

Secret tracking w
Question: Can a depend on secret s ?

By definition, a does not depend on secrets o
We spare a call to the solver !

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 15

Problem with RelSE at binary-level

Problem: Sharing fails at binary-level
* Memory is represented as a symbolicarray < u | i’ >

 Duplicated at the beginning of SE
* Duplicate all load operations

In our experiments, we show that standard RelSE
does not scale on binary code

20

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018 21

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018

Memory as the history of stores.

init_ mem

v/
esp —4|<p>

esp—8|<s|s >

22

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

[1] “Arrays Made Simpler”, Farinier et al. 2018 23

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

+ simplifications for efficient syntactic disequality checks

[1] “Arrays Made Simpler”, Farinier et al. 2018 24

Experimental evaluation

25

Experimental evaluation

wmBinsec/Rel

https://github.com/binsec/rel

 Utility functions from
OpenSSL & HACL*

Cyposreshicprimitives

* libsodium
RQ1. Effective on real crypto? e BearSSL
— 338 programs: 54M unrolled instrin 2h * OpenSSL
RQ2. Comparison vs. RelSE * HACL*

- 700X faster + More in paper

26

https://github.com/binsec/rel

RQ1: Effectiveness

Programs Static Instr. Unrolled Instr. Time Success
Secure (Bounded-Verif) 296 64k 23M 46min 100%
Insecure (Bug-Finding) 42 6k 22k 40min 100%

e First automatic CT analysis of these programs at binary-level
e Can find vulnerabilities in binaries compiled from CT source
* Found 3 bugs that slipped through prior LLVM analysis

27

RQ2: Comparison with RelSE

Instructions Instructions / sec Time Timeouts
RelSE 349k 6.2 15h47 13
Binsec/Rel 23M 4429 1h26 0

Binsec/Haunted 700 faster than RelSE
No timeouts even on large programs (e.g. donna)

28

Conclusion

29

Conclusion

MAY 18-20, 2020

%‘!EB | nse C/Re | 415t IEEE Sympos.ium on

Security and Privacy

After Binsec/Rel

https://github.com/binsec/rel Detection of Spectre attacks
Binsec/*)- Q
: o : “Haunte%? bt
* Dedicated optimizations for RelSE at binary-level
— Sharing for scaling https://github.com/binsec/haunted
* Binsec/Rel, binary-level tool for constant-time
analysis New framework to verify
 Verification of crypto libraries at binary-level + secret-erasure (WIP)

new bugs introduced by compilers out-of reach
of LLVM verification

I’'m also looking for a postdoc for next year © !

30

https://github.com/binsec/haunted
https://github.com/binsec/rel

Credits

lcons made by Freepik lcons made by Becris I:!I'EEI'

from www.flaticon.com from www.flaticon.com @
&] ﬁ K

Icons made by scrip

from www.flaticon.com

Icons made by bglgn L

from www.flaticon.com From draw.io ’r%-,

31

https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.draw.io/
https://www.flaticon.com/authors/becris
https://www.flaticon.com/
https://www.flaticon.com/authors/scrip
https://www.flaticon.com/

