Binsec/Rel: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level

20emes journées Approches Formelles dans |'Assistance au Développement de Logiciels

AFADL, 17 Juin 2021

Published at IEEE Symposium on Security and Privacy 2020

Lesly-Ann Daniel Sébastien Bardin Tamara Rezk

CEA, LIST, Université Paris-Saclay CEA, LIST, Université Paris-Saclay Inria
France France France

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Q> [
Q> ©

What can Influence the Execution Time?

1f secret X = buf|[secret]

then foo() @
cache
else bar () @ ﬂ

secret [e—

© O - ot |@ @)

|
dﬂb L) > sceret secret (

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

@
|

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

— Control-flow
— Memory accesses

Q\>)

—_—

K)E‘T)

Protect Software with Constant-Time Programming

Constant-Time. Execution time is independent from secret input

— Control-flow
— Memory accesses

Q\>)

—_—

K)E‘T)

Property relating 2 execution traces (2-hypersafety)

Problem: Need Automated Verif.

Not easy to write CT code, avoid: Multiple failure points

e Secret dependent control-flow
» Secret dependent memory accesses

Problem: Need Automated Verif.

Multiple failure points

Compiler can introduce bugs [1]! IE
LOL
5
19> B l x|) e

Not easy to write CT code, avoid:

e Secret dependent control-flow
» Secret dependent memory accesses

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 .

Problem: Need Automated Verif.

Not easy to write CT code, avoid: Multiple failure points

e Secret dependent control-flow
» Secret dependent memory accesses

Compiler can introduce bugs [1]!

ﬁ)%& 5|) opummm
K

We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018 0

Lots of verification tools for CT but...

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-Al [2] C v X

- 1 +
Casym [4] & CT-Verif [3] LLVM v X C/LLVM analysis might
CacheAudit [5] Binary N4 X miss CT violations &
CacheD [6] Binary X \/

T Full proof of CT

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017

[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016

[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019

[5] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

[6] G. Doychev and B. Kopf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

11

Lots of verification tools for CT but...

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-Al [2] C VA X

Casym [4] & CT-Verif [3] LLVM v X C/LLVM analysis might
CacheAudit [5] Binary J+ X miss CT violations @
CacheD [6] Binary X \/ * Full proof of CT
Binsec/Rel Binary v v

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017

[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016

[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019

[5] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

[6] G. Doychev and B. Kopf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

12

Bug-Finding & Bounded-Verification

Try Symbolic Execution

* Leading formal method for bug-finding W

* Finds real bugs + reports counterexamples

e Can also do bounded-verification
Symbolic

* Scales well on binary code Execution / \ Solver

The KeY Project

13

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

XY compilers N
Bl B
ﬁ.ﬁ = K
K) &) Compilation

| I
——)

—> Model pairs of executions — Binary-analysis
Standard tools do not apply Reason explicitly about memory

14

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

X1 compilers N
o &2 B
2 K
K)) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis
Standard tools do not apply Reason explicitly about memory

RelSE Binary-level SE
SE for pairs of traces with sharing s BINSEC

15

Challenges for CT analysis

Property of 2 executions Not necessarily preserved by

XY compilers N
Bl B
ﬁ.ﬁ 3
K)) Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis

Standard tools do not apply Reason explicitly about memory
RelSE Binary-level SE
SE for pairs of traces with sharing & BINSEC

Does not scale & (whole memory is duplicated, no sharing)

16

Contributions

0 1

B i n SeC/Rel O https://github.com/binsec/rel

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

From OpenSSL, BearSSL,

Dedicated optimizations for BINSEC/REL libsodium
RelSE at binary-level: First efficient tool 296 verified binaries
maximize sharing in memory for CT analysis 3 new bugs introduced by
(x700 speedup) at binary-level compilers from verified source

Out of reach of LLVM verification tools

17

https://github.com/binsec/rel

» Standard Approach: RelSE

» Our Approach: Binary-level RelSE

Relational Symbolic Execution [1,2]

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 15

Relational Symbolic Execution [1,2]

SE Engine

p P»P<p>
s »PZ<s|s >
mem < u|p >
a »<ala >

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 50

Relational Symbolic Execution [1,2]

SE Engine

p P»P<p>
S l—><S|S’>) Formula:
mem < u|p > F(p,s,s’)

a »p<ala 3>>——
Sharing in SE &

Secret tracking w

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 1

Relational Symbolic Execution [1,2]

SE Engine

Public:
ublic p; I
Secret: S e ! Formula:
‘l) S |—><S|S’>) ’
mem S < u|u > F(p,s,s’)
a »p<ala 3>>——
Sharing in SE &

Secret tracking w

Question: Can a depend on secret s ?
Formula with sharing: Solver) UNSAT

F(p,s,s)Na#a > > SAT #

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 5

Relational Symbolic Execution [1,2]

e)

p P»P<p>
3 l—><S|S’>) Formula:
mem < u|p > F(p,s,s’)
a P»<a> —
/ Sharing in SE &

Secret tracking w
Question: Can a depend on secret s ?

By definition, a does not depend on secrets
We spare a call to the solver !

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 3

Problem with RelSE at binary-level

Problem: Sharing fails at binary-level
* Memory is represented as a symbolicarray < u | i’ >

 Duplicated at the beginning of SE
* Duplicate all load operations

In our experiments, we show that standard RelSE
does not scale on binary code

24

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018 25

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write

e Builds on read-over-write [1]
e Relational expr. in memory
* Simplify loads on-the-fly

— Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018

Memory as the history of stores.

init_ mem

v/
esp —4|<p>

esp—8|<s|s >

26

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

[1] “Arrays Made Simpler”, Farinier et al. 2018 27

Our approach: Binary-level RelSE

FlyRow: on-the-fly read-over-write Memory as the history of stores.
e Builds on read-over-write [1]
* Relational expr. in memory init_mem
* Simplify loads on-the-fly N
— Avoids resorting to duplicated memory esp —4|<p>
v
Example.

load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

+ simplifications for efficient syntactic disequality checks

[1] “Arrays Made Simpler”, Farinier et al. 2018 28

Dedicated optimizations for CT

Use solver response to transform Pack queries along basic-blocks
<plpy >to<a>

* Reduces number of queries

* Better tracking secret dependencies . Useful for CT analysis

e Spare more queries (lots of queries)

29

Experimental evaluation

30

Experimental evaluation

amBinsec/Rel

https://github.com/binsec/rel RQ1. Effective on real crypto?
— 338 programs: 54M unrolled instrin 2h

RQ2. Comparison vs. RelSE

 Utility functions from —> 700X faster
OpenSSL & HACL* RQ3. Genericity
* Cryptographic primitives - gcc/clang compilers & x86/ARM binaries

from libsodium, BearSSL,
OpenSSL, HACL* + More in paper

31

https://github.com/binsec/rel

RQ1: Effectiveness

Programs Static Instr. Unrolled Instr. Time Success
Secure (Bounded-Verif) 296 64k 23M 46min 100%
Insecure (Bug-Finding) 42 6k 22k 40min 100%

* First automatic CT analysis of these programs at binary-level
* Can find vulnerabilities in binaries compiled from CT source
* Found 3 bugs that slipped through prior LLVM analysis

32

RQ2: Comparison with RelSE

Instructions Instructions / sec Time Timeouts
RelSE 349k 6.2 15h47 13
Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

Binsec/Rel 700 faster than RelSE
No timeouts even on large programs (e.g. donna)

33

RQ3: Preservation of CT by compilers

Prior manual study on constant-time bugs introduced by compilers [1]

* We automate this study with Binsec/Rel

 We extend this study: 29 new functions & 2 gcc compilers +clangv7.1 & ARM binaries

* New results:
* gcc—00 can introduce violations in programs

* clang backend passes introduce violations in programs
deemed secure by CT-verification tools for llvm

e + other fun facts in paper

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
34

Conclusion

35

Conclusion

5’-“&--8 | nseC/Rel 418t IEEESymposmm on After Binsec/ReI

Security and Privacy
https://github.com/binsec/rel Detection of Spectre attacks
Binsec/*)- Q
- N - “Haunte%? b
* Dedicated optimizations for RelSE at binary-level
— Sharing for scaling https://github.com/binsec/haunted
* Binsec/Rel, binary-level tool for constant-time
analysis New framework to verify
 Verification of crypto libraries at binary-level + secret-erasure (WIP)
new bugs introduced by compilers out-of reach

of LLVM verification

36

https://github.com/binsec/haunted
https://github.com/binsec/rel

Credits

lcons made by Freepik lcons made by Becris I:!I'EEI'

from www.flaticon.com from www.flaticon.com @
&] ﬁ K

Icons made by scrip

from www.flaticon.com

Icons made by bglgn L

from www.flaticon.com From draw.io ’r%-,

37

https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.draw.io/
https://www.flaticon.com/authors/becris
https://www.flaticon.com/
https://www.flaticon.com/authors/scrip
https://www.flaticon.com/

