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Timing attacks: execution time of programs can 
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First timing attack in 1996 by Paul Kocher: full 
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Memory Accesses

if secret

then foo() 

else bar()

What can Influence the Execution Time?

secret→

→ secret

x = buf[secret]

secret

secret

cache

Control Flow
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Protect Software with Constant-Time Programming
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?
?

?

Constant-Time. Execution time is independent from secret input

→ Control-flow
→ Memory accesses

Property relating 2 execution traces (2-hypersafety)
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Problem: Need Automated Verif.
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Not easy to write CT code, avoid:
• Secret dependent control-flow

• Secret dependent memory accesses
Human

Multiple failure points

Compiler can introduce bugs [1]!

Human

Compiler

We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018



Lots of verification tools for CT but…
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Target Bounded-Verif Bug-Finding
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CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓ + Full proof of CT

C/LLVM analysis might 

miss CT violations 
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Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓

Binsec/Rel Binary ✓ ✓

+ Full proof of CT

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
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C/LLVM analysis might 

miss CT violations 



Bug-Finding & Bounded-Verification
Try Symbolic Execution

• Leading formal method for bug-finding

• Finds real bugs + reports counterexamples

• Can also do bounded-verification

• Scales well on binary code
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Challenges for CT analysis
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Compilation

Property of 2 executions Not necessarily preserved by 
compilers

Reason explicitly about memoryStandard tools do not apply
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Challenges for CT analysis
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→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by 
compilers

Reason explicitly about memoryStandard tools do not apply

Binary-level SE

Does not scale  (whole memory is duplicated, no sharing)

RelSE
SE for pairs of traces with sharing



Contributions
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BINSEC/REL

First efficient tool
for CT analysis
at binary-level

New Tool

Dedicated optimizations for 
RelSE at binary-level:

maximize sharing in memory
(x700 speedup)

Optimizations

From OpenSSL, BearSSL, 
libsodium

296 verified binaries
3 new bugs introduced by 

compilers from verified source
Out of reach of LLVM verification tools

Application: crypto verif.

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

https://github.com/binsec/rel

https://github.com/binsec/rel
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 Standard Approach: RelSE

 Our Approach: Binary-level RelSE



Relational Symbolic Execution [1,2]
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p

s

Public:

Secret:

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
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p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine

Formula: 

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Formula with sharing: Solver UNSAT

SAT𝐹 𝑝, 𝑠, 𝑠′ ∧ 𝑎 ≠ 𝑎′

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
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p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 >

p

s

SE Engine

Formula: 

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

By definition, a does not depend on secrets

We spare a call to the solver !



Problem with RelSE at binary-level
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Problem: Sharing fails at binary-level
• Memory is represented as a symbolic array < 𝜇 | 𝜇′ >
• Duplicated at the beginning of SE
• Duplicate all load operations 

In our experiments, we show that standard RelSE
does not scale on binary code



Our approach: Binary-level RelSE
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FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018



Our approach: Binary-level RelSE

26

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Memory as the history of stores. 

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018



Our approach: Binary-level RelSE

27

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example. 
load esp-4 returns < 𝑝 > instead of 
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores. 

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018



Our approach: Binary-level RelSE

28

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example. 
load esp-4 returns < 𝑝 > instead of 
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

+ simplifications for efficient syntactic disequality checks

Memory as the history of stores. 

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018



Dedicated optimizations for CT
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Untainting

Use solver response to transform        
< 𝜇 | 𝜇′ > to < 𝑎 >

• Better tracking secret dependencies

• Spare more queries

Fault-Packing

Pack queries along basic-blocks

• Reduces number of queries

• Useful for CT analysis           
(lots of queries)



Experimental evaluation
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Experimental evaluation
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https://github.com/binsec/rel

• Utility functions from
OpenSSL & HACL*

• Cryptographic primitives 
from libsodium, BearSSL, 
OpenSSL, HACL*

RQ1. Effective on real crypto?

→ 338 programs: 54M unrolled instr in 2h

RQ2. Comparison vs. RelSE

→ 700× faster

RQ3. Genericity

→ gcc/clang compilers & x86/ARM binaries

Benchmark

Experiments

+ More in paper

https://github.com/binsec/rel


RQ1: Effectiveness

32

Programs Static Instr. Unrolled Instr. Time Success

Secure (Bounded-Verif) 296 64k 23M 46min 100%

Insecure (Bug-Finding) 42 6k 22k 40min 100%

• First automatic CT analysis of these programs at binary-level
• Can find vulnerabilities in binaries compiled from CT source
• Found 3 bugs that slipped through prior LLVM analysis



RQ2: Comparison with RelSE
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Binsec/Rel 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h



RQ3: Preservation of CT by compilers
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[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• New results:

• gcc –O0 can introduce violations in programs

• clang backend passes introduce violations in programs  
deemed secure by CT-verification tools for llvm

29 new functions   &   2 gcc compilers + clang v7.1   &   ARM binaries

• + other fun facts in paper
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Conclusion
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https://github.com/binsec/haunted

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level
→ Sharing for scaling

• Binsec/Rel, binary-level tool for constant-time 
analysis

• Verification of crypto libraries at binary-level + 
new bugs introduced by compilers out-of reach 
of LLVM verification

New framework to verify 
secret-erasure (WIP)

Detection of Spectre attacks

After Binsec/Rel

https://github.com/binsec/haunted
https://github.com/binsec/rel
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