
Lesly-Ann Daniel
CEA, LIST, Université Paris-Saclay

France

Sébastien Bardin
CEA, LIST, Université Paris-Saclay

France

Tamara Rezk
Inria

France

Binsec/Rel: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level

20èmes journées Approches Formelles dans l'Assistance au Développement de Logiciels

AFADL, 17 Juin 2021

Published at IEEE Symposium on Security and Privacy 2020

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

3 s

9 s

9 s

Memory Accesses

if secret

then foo()

else bar()

What can Influence the Execution Time?

secret→

→ secret

x = buf[secret]

secret

secret

cache

Control Flow

Protect Software with Constant-Time Programming

5

?
?

?

Constant-Time. Execution time is independent from secret input

Protect Software with Constant-Time Programming

6

?
?

?

Constant-Time. Execution time is independent from secret input

→ Control-flow
→ Memory accesses

Protect Software with Constant-Time Programming

7

?
?

?

Constant-Time. Execution time is independent from secret input

→ Control-flow
→ Memory accesses

Property relating 2 execution traces (2-hypersafety)

Problem: Need Automated Verif.

8

Not easy to write CT code, avoid:
• Secret dependent control-flow

• Secret dependent memory accesses
Human

Multiple failure points

Human

Compiler

Problem: Need Automated Verif.

9

Not easy to write CT code, avoid:
• Secret dependent control-flow

• Secret dependent memory accesses
Human

Multiple failure points

Compiler can introduce bugs [1]!

Human

Compiler

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Problem: Need Automated Verif.

10

Not easy to write CT code, avoid:
• Secret dependent control-flow

• Secret dependent memory accesses
Human

Multiple failure points

Compiler can introduce bugs [1]!

Human

Compiler

We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Lots of verification tools for CT but…

11

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017
[6] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓ + Full proof of CT

C/LLVM analysis might

miss CT violations

Lots of verification tools for CT but…

12

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓

Binsec/Rel Binary ✓ ✓

+ Full proof of CT

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017
[6] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

C/LLVM analysis might

miss CT violations

Bug-Finding & Bounded-Verification
Try Symbolic Execution

• Leading formal method for bug-finding

• Finds real bugs + reports counterexamples

• Can also do bounded-verification

• Scales well on binary code

13

Challenges for CT analysis

14

→Model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Challenges for CT analysis

15

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Binary-level SERelSE
SE for pairs of traces with sharing

Challenges for CT analysis

16

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Binary-level SE

Does not scale (whole memory is duplicated, no sharing)

RelSE
SE for pairs of traces with sharing

Contributions

17

BINSEC/REL

First efficient tool
for CT analysis
at binary-level

New Tool

Dedicated optimizations for
RelSE at binary-level:

maximize sharing in memory
(x700 speedup)

Optimizations

From OpenSSL, BearSSL,
libsodium

296 verified binaries
3 new bugs introduced by

compilers from verified source
Out of reach of LLVM verification tools

Application: crypto verif.

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

https://github.com/binsec/rel

https://github.com/binsec/rel

18

 Standard Approach: RelSE

 Our Approach: Binary-level RelSE

Relational Symbolic Execution [1,2]

19

p

s

Public:

Secret:

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

20

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine
Public:

Secret:

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

21

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

22

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Formula with sharing: Solver UNSAT

SAT𝐹 𝑝, 𝑠, 𝑠′ ∧ 𝑎 ≠ 𝑎′

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

23

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

By definition, a does not depend on secrets

We spare a call to the solver !

Problem with RelSE at binary-level

24

Problem: Sharing fails at binary-level
• Memory is represented as a symbolic array < 𝜇 | 𝜇′ >
• Duplicated at the beginning of SE
• Duplicate all load operations

In our experiments, we show that standard RelSE
does not scale on binary code

Our approach: Binary-level RelSE

25

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

26

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

27

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

28

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

+ simplifications for efficient syntactic disequality checks

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Dedicated optimizations for CT

29

Untainting

Use solver response to transform
< 𝜇 | 𝜇′ > to < 𝑎 >

• Better tracking secret dependencies

• Spare more queries

Fault-Packing

Pack queries along basic-blocks

• Reduces number of queries

• Useful for CT analysis
(lots of queries)

Experimental evaluation

30

Experimental evaluation

31

https://github.com/binsec/rel

• Utility functions from
OpenSSL & HACL*

• Cryptographic primitives
from libsodium, BearSSL,
OpenSSL, HACL*

RQ1. Effective on real crypto?

→ 338 programs: 54M unrolled instr in 2h

RQ2. Comparison vs. RelSE

→ 700× faster

RQ3. Genericity

→ gcc/clang compilers & x86/ARM binaries

Benchmark

Experiments

+ More in paper

https://github.com/binsec/rel

RQ1: Effectiveness

32

Programs Static Instr. Unrolled Instr. Time Success

Secure (Bounded-Verif) 296 64k 23M 46min 100%

Insecure (Bug-Finding) 42 6k 22k 40min 100%

• First automatic CT analysis of these programs at binary-level
• Can find vulnerabilities in binaries compiled from CT source
• Found 3 bugs that slipped through prior LLVM analysis

RQ2: Comparison with RelSE

33

Binsec/Rel 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

RQ3: Preservation of CT by compilers

34
[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• New results:

• gcc –O0 can introduce violations in programs

• clang backend passes introduce violations in programs
deemed secure by CT-verification tools for llvm

29 new functions & 2 gcc compilers + clang v7.1 & ARM binaries

• + other fun facts in paper

Conclusion

35

Conclusion

36

https://github.com/binsec/haunted

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level
→ Sharing for scaling

• Binsec/Rel, binary-level tool for constant-time
analysis

• Verification of crypto libraries at binary-level +
new bugs introduced by compilers out-of reach
of LLVM verification

New framework to verify
secret-erasure (WIP)

Detection of Spectre attacks

After Binsec/Rel

https://github.com/binsec/haunted
https://github.com/binsec/rel

Credits

37

Icons made by bqlqn
from www.flaticon.com

Icons made by Freepik
from www.flaticon.com

From draw.io

Icons made by Becris
from www.flaticon.com

Icons made by scrip
from www.flaticon.com

https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.draw.io/
https://www.flaticon.com/authors/becris
https://www.flaticon.com/
https://www.flaticon.com/authors/scrip
https://www.flaticon.com/

