
Lesly-Ann Daniel
CEA, LIST, Université Paris-Saclay

France

Sébastien Bardin
CEA, LIST, Université Paris-Saclay

France

Tamara Rezk
Inria

France

Hunting the Haunter
Efficient Relational Symbolic Execution for Spectre with Haunted RelSE

Spectre haunting our code

2

Spectre attacks (2018)

• Exploit speculative execution in processors

• Affect almost all processors

• Attackers can force mispeculations: transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with cache attacks

Spectre-PHT

3

if idx < size {

v = tab[idx]

leak(v)

}

Regular execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-PHT

4

if idx < size {

v = tab[idx]

leak(v)

}

Regular execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-STL

5

Regular execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

Spectre-STL

6

Regular execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)

Spectre-STL

7

Regular execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

+

leak(s)leak(p)

Spectre-STL

8

Regular execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

+

leak(s)leak(p) leak(init_mem[a])

Detect Spectre attacks ?

• Counter-intuitive semantics

• Path explosion:

• Spectre-STL: all possible

load/store interleavings !

• Needs to hold at binary-level

9

Challenging !

Semantics Paths

Regular semantics 14

Speculative semantics (Spectre-STL) 37M

Path explosion for Spectre-STL on Litmus tests (328 instr.)

Goal: New verification tools for Spectre

10

Goal. We need new verification tools to detect Spectre attacks !

Challenge. Model new transient behaviors avoiding path explosion

→ Verify Speculative Constant Time (SCT) property
→ Use Relational Symbolic Execution (RelSE)

Proposal.

No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations 

No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Binsec/Haunted Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations 

Contributions

Haunted RelSE optimization
• Model transient and regular behaviors at the same time

• Spectre-PHT: pruning redundant paths
• Spectre-STL: pruning + encoding to merge paths

• Formal proof: equivalence with explicit exploration [in the paper]

Binsec/Haunted, binary-level verification tool
• Experimental evaluation on real world crypto (donna, libsodium, OpenSSL)
• Efficient on real-wold crypto for Spectre-PHT →

• Efficient on small programs for Spectre-STL →

• Comparison with SoA: faster & more vulnerabilities found

New Spectre-STL violations
• Index-masking (countermeasure against Spectre-PHT) + proven mitigations
• Code introduced for Position-Independent-Code [in the paper]

13

Haunted RelSE for Spectre-PHT

14

Background: Symbolic Execution

1515

Symbolic execution. An illustration.

if c

then foo

else bar
c

foo bar

2 regular paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Explicit RelSE for Spectre PHT

1616

Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 regular branches
• 2 transient branches (until max

speculation depth)

On regular and transient branches:
• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 regular paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)

Haunted RelSE for Spectre PHT

1717

Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = regular ∨ transient
• After max spec. depth, add constraint

to invalidate transient path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Haunted RelSE for Spectre-STL

18

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

19

store a s

store a p

store b q

v = load a

v ↦ p

1 regular path

where a ≠ b

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

20

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 regular path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

21

Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 regular path

Redundant case
Can be eliminated with

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Explicit RelSE for Spectre-STL

22

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Experimental evaluation

23

Experimental evaluation

24

Binsec/Haunted.
Implementation of Haunted RelSE

More details on Feb, 25th at LASER workshop ! https://github.com/binsec/haunted

Benchmark.

• Litmus tests (46 small test cases)

• Cryptographic primitives tea & donna

• More complex cryptographic primitives

• Libsodium secretbox

• OpenSSL ssl3-digest-record

• OpenSSL mee-cdc-decrypt

Experiments.

RQ1. Effective on real code ?

→ Spectre-PHT & Spectre-STL 

RQ2. Haunted vs. Explicit ?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

RQ3. Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗ [in paper]

https://github.com/binsec/haunted

Haunted vs. Explicit for Spectre-PHT

Tea and donna (10 programs). No difference between Explicit and Haunted ≈

25

Paths Time Timeout Bugs

Explicit 1546 ≈3h 2 21

Haunted 370 15s 0 22

Libsodium & OpenSSL (3 programs)

X86 Instr. Time Timeout Bugs

Explicit 2273 18h 3 43

Haunted 8634 ≈8h 1 47

Take away, Haunted RelSE vs Explicit RelSE.

• At worse: no overhead compared to Explicit ≈
• At best: faster, more coverage, less timeouts ↗

Litmus tests (32 programs) ↗ ↗

Haunted vs. Explicit for Spectre-STL

26

Paths X86 Ins. Time Timeouts Bugs Secure Insecure

Explicit 93M 2k 30h 15 22 3/4 13/23

Haunted 42 17k 24h 8 148 4/4 23/23

• Avoids paths explosion
• More unique instruction explored
• Faster

• Less timeouts
• More bugs found
• More programs proven secure / insecure

Take away, Haunted RelSE vs Explicit RelSE.
Always wins ! ↗

Weakness of index-masking countermeasure

27

Weakness of Spectre-PHT countermeasure

28

Index masking. Add branchless bound checks

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

29

Index masking. Add branchless bound checks

Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

30

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Weakness of Spectre-PHT countermeasure

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index in a register

31

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

Verified mitigations:

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Conclusion

32

Conclusion

33

• Haunted RelSE optimization
• Model transient and regular behaviors at the same time

• Significantly improves SoA methods

• Binsec/Haunted, binary-level verification tool

• Spectre-PHT: efficient on real world crypto →

• Spectre-STL: efficient on small programs→

• New Spectre-STL violations with index masking and PIC

https://github.com/binsec/haunted

https://github.com/binsec/haunted_bench

https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

