
AUTOMATED PROGRAM ANALYSIS
FROM SAFETY TO HYPERSAFETY

Thursday, 8th October, 2020



PROGRAMS MANIPULATE SECRET DATA

2

 Rely on cryptography

→ Cryptography offers mathematical guarantees

→ Verified implementations (no bugs, functional)

→ But what about execution in the physical world?

 Critical software are prevalent

→ Secure internet communications

→ Secure banking transactions

→ Manipulate health data



PROTECT SECRETS MANIPULATED BY PROGRAMS

3

THE CASE OF TIMING ATTACKS

 First timing attack in 1996 by Paul Kocher: 

full recovery of RSA encryption key

 Timing attacks: execution time of 

programs can leak secret information

 Execution is not easy to determine

→ Sequence of instructions executed

→ Memory accesses (Cache attacks, 2005)

→ Speculation (Spectre attacks, 2018)



Human

Compiler

Hardware

4

CONSTANT-TIME PROGRAMMING

A SOLUTION AGAINST TIMING ATTACKS

 Constant-time programming

→ Execution time of a program must be 

independent from secret data

 Hard to guarantee constant-time

→ Need automated verification tools
?
?
?

?



Not necessarily 

preserved by compilers

→ Binary analysis

Not regular safety but 

security (2-hypersafety)

→ Efficiently model 

pairs of executions

Model efficiently 

program behavior with 

speculative execution

5

31 2

Compilation

AUTOMATIC VERIFICATION OF CONSTANT-TIME

THREE CHALLENGES



CONTRIBUTION

6

EFFICIENT AUTOMATED ANALYSIS OF CONSTANT-TIME AT BINARY LEVEL

NEW TOOLS:
BINSEC/REL & 

BINSEC/HAUNTED

EFFICIENT: BASED ON

DEDICATED OPTIMIZATIONS

(× 𝟕𝟎𝟎 SPEEDUP)

BINSEC/REL EFFECTIVE

ON REAL CRYPTO CODES

2 NEW BUGS & 296 PROOFS

Binary

program

Mathematical formula 

of the program
Constraint-solver: 

resolves formula



CONCLUSION

7

 My Research

Efficient automated analysis for security

(2-hypersafety) at binary level

 Application

Constant-time cryptography under 

speculative execution

 Future Work

→Extend Binsec/Rel to more security properties

→Explore architectural guarantees for security


