
Binsec/RelSE
Efficient Constant-Time Analysis of Binary-Level Code with
Relational Symbolic Execution

Lesly-Ann Daniel
CEA LIST, France

Sébastien Bardin
CEA LIST, France

Tamara Rezk
INRIA, France

IEEE Symposium on Security and Privacy
May 19, 2020



Problem: Protecting Secrets against Timing Attacks

Secret input:
sensitive data,
cryptographic key, etc.

Attacker’s goal:
Recover info on secret

1/21



What Can Influence the Execution Time?

Control Flow

Secret-dependent control-flow
can leak secret

Memory Accesses

Secret-dependent memory access
can leak secret

2/21



Solution: Constant-Time Programming (CT)

Definition: Two executions with the same public input must have
the same control flow and memory accesses regardless of the value
of the secrets.

Programming discipline to protect against timing attacks

3/21



Constant-Time is Generally not Preserved by Compilers [1]

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
4/21



The Need for Automatic Analysis

Constant-time is important to protect against timing attacks
but writing constant-time code is tricky

Constant-time is generally not preserved by compiler [2]

• Binary-level is harder than higher-level analysis (C, llvm)
• Explicit representation of memory

Need efficient binary-level reasoning

Constant-time is about pairs of executions (2-hypersafety)
• Standard tools do not directly apply
Need dedicated tools that scale for analyzing pairs of traces

[2] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
5/21



Lots of Verification Tools for Constant-Time

• For high level code:
• Source code [Bacelar Almeida et al. 2013], [Blazy, Pichardie,

and Trieu 2017]
• LLVM code [Almeida et al. 2016], [Brotzman et al. 2019]

• For binary code:
• Sacrifice bounded-verification [Wang et al. 2017],

[Subramanyan et al. 2016]
• Sacrifice bug-finding [Doychev and Köpf 2017]

Our goal: Design efficient tool to analyze constant-time at
binary-level for bounded-verification and bug-finding

6/21



Lots of Verification Tools for Constant-Time

• For high level code:
• Source code [Bacelar Almeida et al. 2013], [Blazy, Pichardie,

and Trieu 2017]
• LLVM code [Almeida et al. 2016], [Brotzman et al. 2019]

• For binary code:
• Sacrifice bounded-verification [Wang et al. 2017],

[Subramanyan et al. 2016]
• Sacrifice bug-finding [Doychev and Köpf 2017]

Our goal: Design efficient tool to analyze constant-time at
binary-level for bounded-verification and bug-finding

6/21



Definition: Bug-Finding & Bounded-Verif for Constant-Time

Bug-Finding (BF): a bug found in the analysis is a real bug.

ñ

Bounded-Verification (BV): when no bugs are found in the analysis then
there is no bug in the program up to a certain bound.

ñ

7/21



Bug-Finding and Bounded-Verification?
Try Symbolic Execution

Symbolic Execution (SE)
• Leading formal method for bug-finding
• Finds real bugs & reports counterexamples
• Can also perform bounded-verification
• Scales well on binary code

8/21



Adapt SE for Constant-Time: Technical Key Insights

Proposal: Adapt symbolic execution for constant-time

Binary-Level Bug Finding Bound. Verif. Scalability

Build on Relational SE [1,2]
Execute two programs in the same symbolic execution instance
We show that it does not scale at binary-level

New: Binary-Level RelSE
Dedicated optimizations for binary-level and constant-time analysis

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

9/21



Contributions

Dedicated optims for constant-time analysis at binary-level
With formal definitions & proofs

Binsec/Rel: First efficient BF & BV tool for CT
700ˆ speedup compared to standard RelSE

Large Scale Experiments (338 cryptographic binaries)

• New proofs on binary previously done on C/LLVM/F*
• Replay of known bugs (e.g. Lucky13)

Extension of study on preservation of CT by compilers [4]
Discover new bugs introduced by gcc -O0 and clang backend
passes, out of reach of previous tools for LLVM

[4] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
10/21



Standard Approach (e.g. [1,2]):
Symbolic Execution for Constant-Time via Self-Composition

Public:
Secret: P ÞÑ P

S ÞÑ S
mem ÞÑ µ

a ÞÑ α

Symbolic Execution

F pP,Sq
Formula

Question: Can “a” leak w.r.t. constant-time policy?

F pP,Sq ^ F pP 1, S 1
q^

P “ P 1
^ α ‰ α1

Self-Composed Formula
Ñ two executions Solver

? unsat

sat

[1] “Verifying information flow properties of firmware using symbolic execution”, Subramanyan et al. 2016
[2] “CaSym: Cache aware symbolic execution for side channel detection and mitigation”, Brotzman et al. 2019 11/21



Standard Approach (e.g. [1,2]):
Symbolic Execution for Constant-Time via Self-Composition

Limitation of self-composition:
High number of insecurity queries: conditional + memory access

Why?
• No sharing between two executions
• Does not keep track of secret dependencies

Symbolic-execution for constant-time via self-composition
does not scale

We show it in our experiments

[1] “Verifying information flow properties of firmware using symbolic execution”, Subramanyan et al. 2016
[2] “CaSym: Cache aware symbolic execution for side channel detection and mitigation”, Brotzman et al. 2019

12/21



Better Approach: Relational Symbolic Execution [1,2]

Public:
Secret: P ÞÑ xPy

S ÞÑ xS | S 1y

mem ÞÑ xµ | µ1y

a ÞÑ xα | α1y

Relational SE

F pP, S,S 1q

Formula

� Sharing
� Secret-tracking

Question: Can “a” leak w.r.t. constant-time policy?

F pP,S, S 1
q^

α ‰ α1

Formula Ñ two executions Solver

? unsat
sat

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

13/21



Better Approach: Relational Symbolic Execution [1,2]

Public:
Secret: P ÞÑ xPy

S ÞÑ xS | S 1y

mem ÞÑ xµ | µ1y

a ÞÑ xαy

Relational SE

F pP, S,S 1q

Formula

� Sharing
� Secret-tracking

Question: Can “a” leak w.r.t. constant-time policy?

No

Spared solver call

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

13/21



Better Approach: Relational Symbolic Execution [1,2]

Problem: sharing fails at binary-level

• Memory is represented as a symbolic array variable xµ | µ1y

• Duplicated at the beginning of RelSE
• Duplicate all the load operations

In our experiments, we show that standard RelSE
does not scale on binary code

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

14/21



Our Idea: Dedicated Simplifications for Binary-Level RelSE

FlyRow : on-the-fly read-over-write

• Build on read-over-write [1]
• Relational expressions in the memory
• Simplify load operations on-the-fly

Ñ Avoids resorting to the duplicated memory

Example
“load esp-4” returns xλy instead of
xselect µ pesp ´ 4q | select µ pesp ´ 4qy

+ simplifications in the paper

Memory as the
history of stores

esp ´ 4 xλy

esp ´ 8 xβ | β1y

esp xebpy

[1] “Arrays Made Simpler”, Farinier et al. 2018
15/21



Dedicated Optimizations for Constant-Time Analysis

Untainting

Use solver responses to transform xα | α1y to xαy.

• Track secret-dependencies more precisely
• Spare insecurity queries

Fault-Packing
Pack insecurity queries along a basic-block

• Reduces number of queries
• Useful for constant-time (lot of insecurity queries)

16/21



Binsec/Rel: Experimental Evaluation

RQ1 Effectiveness: Binsec/Rel for bounded-verif. &
bug-finding of constant-time on real-world crypto. binaries?

RQ2 Comparison vs. Std Approaches Binsec/Rel vs. RelSE?
RQ3 Genericity: several architectures / compilers?
RQ4 Impact of Simplifications FlyRow, Untainting,

Fault-Packing?
RQ5 Comparison vs. Std SE: Binsec/Rel vs. Std SE &

FlyRow with SE?

17/21



Effectiveness for Bounded-Verif & Bug-Finding (RQ1)

338 samples of cryptographic binaries taken from [1,2,3]

• utility functions from OpenSSL & HACL*

• cryptographic primitives: tea, donna, salsa20, chacha20, etc

• libraries: libsodium, BearSSL, OpenSSL, HACL*

#Prog #Instr #Instrunrol Time Success

Secure (BV) 296 64k 23M 53min 100%
Insecure (BF) 42 6k 31k 69min 100%

First automatic CT-analysis at binary level
Can find vulnerabilities in binaries compiled from CT sources

Found 3 bugs that slipped through prior analysis

[1] “Verifying Constant-Time Implementations.”, Almeida et al. 2016
[2] “Verifying Constant-Time Implementations by Abstract Interpretation”, Blazy, Pichardie, and Trieu 2017
[3] “HACL*”, Zinzindohoué et al. 2017

18/21



Scalability: Comparison with RelSE (RQ2)

#I #I/s Time 3 7

RelSE 320k 5.4 16h30 14 283 42
Binsec/Rel 22.8M 3861 1h38 0 296 42

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

700ˆ faster than RelSE
No , even on large programs (e.g. donna)

19/21



Effect of Compiler Optimizations on Constant-Time
(RQ1/RQ3)

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:
29 new functions, 2 gcc compiler + clang v7.1, ARM binaries

• New Results

• gcc -O0 can introduce violations in programs but as
optimization level increases, it tends to remove violations
(contrary to clang)

• clang backend passes introduce violations in programs
deemed secure by CT-verification tools for LLVM

• More in paper

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
20/21



Conclusion

Efficient Bug-Finding & Bounde-Verification
for Constant-Time at Binary-Level

Bug-Finding 3 & Bounded-Verif. 3

no over-approx. & no under-approx.

Sharing for Scaling
• Relational SE
• Dedicated optimizations

Binary-level
• No source code needed
• Do not rely on compiler

Experiments on 338 crypto binaries
• new proofs at binary level
• new bugs (gcc-O0 and clang backend)
• automate manual study on compilers

21/21



Thank You for your Attention


	Thank You for your Attention

