Binsec/RelSE

Efficient Constant-Time Analysis of Binary-Level Code with
Relational Symbolic Execution

Author: Supervisors:
Lesly-Ann Daniel Sébastien Bardin
CEA LIST CEA LIST
Oct 2018 - Oct 2021 Tamara Rezk

INRIA Sophia Antipolis

Context: We Want to Protect our Secrets
Sensitive Untrusted
Application % Application

e Confidentiality & Integrity

e Constant-time crypto.

Secret erasure

e Spectre attacks

1/25

Constant-Time Programming (CT)

Secret

Public

'

Secret'

What can influence time t?
e Control flow

e Address of memory accesses (cache)

2/25

Constant-Time Programming (CT)

L.
W
_"‘t, kv‘"

Secret'

What can influence time t?
e Control flow

e Address of memory accesses (cache)

CT is a property of 2 execution traces.

2/25

CT is not a regular safety property (2-hypersafety)

e Standard tools do not apply

e Reduction to safety with self-composition does not scale [1].
CT is generally not preserved by compiler

e c=(x<y)-1 compiled to a conditional jump?

e Depends on compiler options and optimizations [2].

Requires tools for 2-hypersafety & binary-level reasoning.

[1] “Secure information flow as a safety problem”, Terauchi and Aiken 2005
[2] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

3/25

Problem

CT verification tools target: Binary-level tools:
e source code [1,2] e Dynamic analysis (sacrifice BV) [5]
o LLVM code [3,4] e Sound over-approx. (sacrifice BF) [6]

[1
[2
[3
[4]
[5

[7

e Do not scale [7]

Goal: Design Efficient BF & BV Tool for CT at Binary-Level

“Formal verification of side-channel countermeasures using self-composition”, Bacelar Almeida et al. 2013
“Verifying Constant-Time Implementations by Abstract Interpretation”, Blazy, Pichardie, and Trieu 2017
“Verifying Constant-Time Implementations.”, Almeida et al. 2016

“CaSym: Cache aware symbolic execution for side channel detection and mitigation”, Brotzman et al. 2019
“CacheD: Identifying Cache-Based Timing Channels in Production Software”, Wang et al. 2017

f6] *

“Verifying information flow properties of firmware using symbolic execution”, Subramanyan et al. 2016

Rigorous analysis of software countermeasures against cache attacks"”, Doychev and Képf 2017

4/25

Bug Finding? Try Symbolic Execution

Symbolic
Execution Solver

Symbolic Execution @-

e Leading formal method for BF

e Precise (no false alarm)

e Scales better than other semantic anaIyS|s

e Widely used in intensive testing and security analysis

e Can also be used for bounded verification

o @
fm BINSEC

The KeY Project
5/25

Key Insights: Adapt SE for CT

Goal: Adapt Symbolic Execution for CT

Bug Finding | Bounded Verification | Scalability

Relational SE: 2 programs in the same SE instance [1,2]

e Formula sharing F q
or source code

e Spared checks Do not scale at binary-level

Binary-Level RelSE: Dedicated optims

e On-the-fly simplification for binary-level reasoning

e Untainting New

e Fault-packing

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
6/25

Contributions

Dedicated optims for CT analysis at Binary-Level
Binsec/Rel: First efficient BF & BV tool for CT
Large Scale Experiments

Extension of study on CT preservation by compilers [4]

7/25

Contributions

Dedicated optims for CT analysis at Binary-Level
e Existing ones: relies on RelSE to improve sharing
e New ones for binary: on-the-fly binary-level simplification

e New ones for CT analysis: untainting & fault-packing

Binsec/Rel: First efficient BF & BV tool for CT
Large Scale Experiments

Extension of study on CT preservation by compilers [4]

7/25

Contributions

Dedicated optims for CT analysis at Binary-Level

Binsec/Rel: First efficient BF & BV tool for CT
e Extensive experimental evaluation (338 samples)
e 700x speedup compared to RelSE

e 1.8x overhead compared to SE

Large Scale Experiments

Extension of study on CT preservation by compilers [4]

7/25

Contributions

Dedicated optims for CT analysis at Binary-Level
Binsec/Rel: First efficient BF & BV tool for CT

Large Scale Experiments
e New proofs on binary previously done on C/LLVM/F* [1,2,3]
e Replay of known bugs (e.g. Lucky13)

Extension of study on CT preservation by compilers [4]

[1] “Verifying Constant-Time Implementations.”, Almeida et al. 2016

[2] “Verifying Constant-Time Implementations by Abstract Interpretation”, Blazy,
Pichardie, and Trieu 2017

[3] “HACL*", Zinzindohoué et al. 2017

7/25

Contributions

Dedicated optims for CT analysis at Binary-Level
Binsec/Rel: First efficient BF & BV tool for CT
Large Scale Experiments

Extension of study on CT preservation by compilers [4]

e Automatization

More implementations
e gcc compiler + newer version of clang
e ARM binaries

e Discover new bugs out of reach of previous tools for LLVM

[4] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

7/25

© 0 N O G B W N =

—
o

Background: Symbolic Execution

uint32 ct, // public

uint32 x){ // private
if (ct > 0) {

y = ~x & (x—1); A>0 A<0

return y >> 31;
} else { . x == 0

if (x = 0) return 1;

else return O;

int is_zero({ct — A
g =

1 ’ret 1‘ ret O

Question: How to reach line 97

Solver

(<0 A B0 —"— @y ——[1=05=1]

8/25

Background: SE & Self-Composition for CT

int is_zero(
uint32 ct, // public J_{ct — A
uint32 x){ // private

if (ct > 0) { ct > 0
y = ~x & (x—1);
return y >> 31; A>0 A<0

} else {
if (x = 0) return 1; ’
else return O;

i3

] k==

© 0 ~N O G B W N -

B=0 B #0

—
o

ret 1| |ret 0

w__mn

Question: Can “x" leak w.r.t. CT policy?

Jump 4. (A=X)A(A>0# X\ >0))? - unsat v/

(N REONG O, -00-

A(B=0%#p =0) 0,8 =0) o/25

Problem: SE & Self-Composition for CT

Self-Composition: no sharing between both executions
e size of queries x2
e does not keep track of secret dependencies

e high number of insecurity queries

Symbolic-Execution & Self-Composition for CT does not scale.

10/25

Relational SE for CT
int is_zero(
uint32 ct,

1 ct — A
5 // public 7= {x — (B |8
3 uint32 x){ // private ct > 0
41if (ct > 0) {
5 y = ~x & (x—1); A>0 A<0
6 return y >> 31;
7|} else { ’ ‘ ’X == O‘
8 if (x = 0) return 1; B_0ng =0 //I \\\
9 else return O; [
10 | }} ret 1 2 \
Question: Can “x"

leak w.r.t. CT policy?
Jump 4. Spared query — /

Jump 8. (A<0)A(B=0+#p =0))? —>sat (A=0,8

11/25

Challenge: Binary-Level Reasonning

Relational SE: sharing via relational expressions
e keeps track of secret dependencies
e \, # insecurity queries
e \, size of queries

e scales better

12/25

Challenge: Binary-Level Reasonning

Relational SE: sharing via relational expressions
e keeps track of secret dependencies
e \, # insecurity queries
e \, size of queries

e scales better
Problem Does not scale for binary analysis

e Memory is represented as a symbolic array variable
e Duplicated at the beginning of RelSE

e Duplicate all the load operations

12/25

Dedicated Simplifications for Binary-Level RelSE

Memory as the
history of stores

Problem
RelSE + Binary = Duplicated Memory @4 ™
FlyRow: on-the-fly read-over-write
e Build on read-over-write [1] @ G5
e Simplify load operations on-the-fly

e Relational expressions in the memory

[espo [(ebpo)

[1] “Arrays Made Simpler”, Farinier et al. 2018

13/25

Dedicated Simplifications for CT Analysis

Untainting
Solver says 3 # (' is UNSAT = Replace {5 | 8’ by (8) in SE.

+ Track secret-dependencies more precisely

-+ Spare insecurity queries

Fault-Packing
Pack insecurity queries along the analysis and send them at the
end of a basic-block.

+ Reduces number of queries

+ Useful for CT (lot of insecurity queries)

— Precision loss: violations at basic-block Ivl

14/25

Implementation

Input file
x86/ARM SMT Solver
_ | Overall:
e Part of BINSEC

: [.
Disasm| BINSEC f]rl:lé'::lyb fx?lt's/at e ~ 3.5k lines of Ocaml
| L | e IR: DBA
FOrRMULA
DB |_.| | X e Input: x86 / ARM binary
T sat/ insec n
unsat unsat sat | Usability:
Relational -"!Insecurity l e Stubs for specification
Symbolic O . o
Exgloration REL Analysis e IDA plugin for visualization
|—> No violation found 007 «—

15/25

Scalability: Comparison with Standard Approaches

O [#ls] #Q] T [=2] v [X
SC| 252k | 3.9 170k | 65473 | 15 | 282 | 41
RelSE | 320k | 5.4 | 97k | 59316 | 14 | 283 | 42

| Binsec/REL | 22.8M | 3861 | 3.9k | 5895 | 0] 296 | 42 |

Total on 338 cryptographic samples (secure & insecure)

N X25 #Q | N\ T | /7 x700 #l/s | \\ B

16/25

Scalability: Performances of Optimizations

| Vesion [# [#/s] #Q | T [R[] v | x|
Standard RelSE with Unt and fp
RelSE 320k | 5.4 | 96919 | 59316 | 14 | 283 [42
+ Unt 373k | 8.4 | 48071 | 44105 | 8 | 288 | 42
+ fp 391k | 10.5 | 33929 | 37372 | 7 | 289 | 42

Binsec/Rel (RelSE + FlyRow + Unt + fp)
RelSE+FlyRow | 22.8M | 3075 4018 7402 0| 296 | 42
+ Unt 22.8M | 3078 4018 7395 0 | 296 | 42
+ fp 22.8M | 3861 3980 5895 0 | 296 | 42

e FlyRow: major source of improvement
e Unt and fp: positive impact on RelSE
e Unt and fp: modest impact on FlyRow

17/25

Scalability: Other Facts

e BINSEC/REL: only x1.8 overhead compared to our best SE
e FlyRow outperforms SOA ROW as post-processing [1]
e FlyRow also improves standard SE #//s x 450.

[1] “Arrays Made Simpler”, Farinier et al. 2018

18/25

Efficiency: Bounded-Verification

~ #I #l, T S
ct-select 1015 1507 21 29 x v
utility ct-sort 2400 1782 24 | 12 x /
Hacl* 3850 | 90953 | 9.34 | 110 x /
OpenSSL 4550 5113 75 | 130 x V/
tea -00 & -03 540 1757 .24 2 x v
donna -00 & -03 | 11726 | 12.9M | 1561 2 x Vv
. . salsa20 & chacha20 4344 30.5k 5.7 2 x Vv
libsodium
sha256 & sha512 | 21190 | 100.8k 11.6 2 x v
chacha20 1221 5.0k 1.0 v
Hacl* curve25519 8522 9.4M | 1110 v
sha256 & sha512 3292 48.6k 7.1 2 x v
BearSSL aes_ct & des_ct 1039 42.0k | 34.5 2 x v
OpenSSL tls-rempad-patch 424 35.7k 406 v
| Total | 64114 | 22.7M [3154 | 296 x / |

Conclusion: First automatic CT-analysis at binary level
19/25

Efficiency: Bug-Finding

cT
~#I| #l, | T S | % |Comment
Src
tilit ct-select| 735| 767 .29| Y [21xX| 21| 1 new X
(1
s ct-sort| 3600| 7513|13.3| Y |18xX| 44| 2 new X
aes_big| 375| 873|1574| N | X | 32| -
BearSSL -
ear des_tab| 365(10421| 9.4/ N| x | 8 -

OpenSSL tls-remove-pad-lucky13| 950(11372(2574| N | X 5 -
| Total 6025[30946[4172] - [42xx[110] - |

Conclusion: First automatic CT-analysis at binary level

20/25

Effect of compiler optimizations on CT (see [1])

Extension of study on CT preservation by compilers [1]

e Automatization

e 29 new functions

e add 2 gcc compiler + clang v7.1 for x86
e ARM binaries

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

21/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0|cl-3.9|cl-7.1||gcc-5.4|gcc-8.3 ||arm-gcc

00 03|00 03|00 03(|00 03 |00 03 ||00 03
ct_select_vl X\ X\ XY VIV |/
ct_select_v2 v X\ XV X||v V|V V||V V/
ct_select_v3 /N XWX N |
ct_select_v4 v XV XV X||v V|V V||V V/
select_naive (insecure) X X|X X[X X||Xx X |Xx X |Xx V
ct_sort XN XX X X/
ct_sort_mult XV XV /X VX /XS
sort__naive (insecure) X X|X X|X X||[Xx X |X X |[X V
hacl_utility (x11) A A AT A A A AT A a4
openssl_utility (x13) A A A A A I A A A A A
tea_enc & dec (x2) A A A A A A A A | A

Shows genericity of BINSEC/REL: several compilers, and x86/ARM arch

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0 | cl-3.9 |cl-7.1 ||gcc-5.4|gcc-8.3 | |arm-gcc

00 03|00 03|00 03[[00 03 [00 03 [[00 03
ct_select_v1 RO R RN vy v
ct_select_v2 RO ®l RN vy vy v
ct_select_v3 SRR vl vl
ct_select_v4 RO ® RN vy vl v
select_naive (insecure) X X|X X|X X||X X |Xx X ||x V
ct_sort OO 2L 2 I
ct_sort_mult OO A LA LI P
sort__naive (insecure) X X|X X|X X||X X |X X |[X V
hacl_utility (x11) Vv v vl viiv vilv v
openssl_utility (x13) A A AT A A A A A s
tea_enc & dec (x2) A A A AT A A A A A A |

clang optimizations tend to break CT (supports [1])

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0|cl-3.9| cl-7.1 ||gcc-5.4|gcc-8.3 ||arm-gcc

00 03|00 03|00 03 (|00 03 |00 03 ||00 03
ct_select_vl X\ X\ XY O\ |/
ct_select_v2 v XV XV XI|lv vV |V /||lVv V
ct_select_v3 VAR AT 4| AN I AR AN | N A
ct_select_v4 v XV XV XI|lv vV |V V||V V
select_naive (insecure) X X|X X[X X||Xx Xx|Xx X ||x V
ct_sort v xlv xlv@lx v]x v]x v
ct_sort_mult Xl xlvDlx vilx vk v
sort_naive (insecure) X X|X X[X X||X X |Xx X ||x V
hacl_utility (x11) A A AT A A A A F AR A | I A
openssl_utility (x13) N A A AT A A AR A AN | A
tea_enc & dec (x2) AT A A A A A A A | S

newer clang versions not more likely to break CT (contradicts [1])

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0|cl-3.9|cl-7.1||gcc-5.4|gcc-8.3 ||arm-gcc

00 03|00 03|00 03(|00 03 |00 03 ||00 03
ct_select_vl X\ X\ XY VIV |/
ct_select_v2 v X\ XV X||v V|V V||V V/
ct_select_v3 /N XWX N |
ct_select_v4 v XV XV X||v V|V V||V V/
select_naive (insecure) X X|X XX X|[Xx X |Xx X ||X @
ct_sort v xlv x|v /lx Olx O]lx v
ct_sort__mult vV XV XV /|| X @ X @ X Vv
sort_naive (insecure) X X|X XX X||x X |X X |X @
hacl_utility (x11) AT A AT A A I A A A A A
openssl__utility (x13) AT A AT A A IV A AT AA A
tea_enc & dec (x2) N AV A AT A A IV A AT A A

gcc optimizations tend to remove branches (especially in ARM)

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0 | cl-3.9 |cl-7.1||gcc-5.4|gcc-8.3 | |arm-gcc

00 03|00 03|00 03||00 03 |00 03 ||00 03
ct_select_v1 OO I 222 2
ct_select_v2 v XV XV XV V|V /Y S
ct_select_v3 /I X XN N |
ct_select_v4 XV XV XV V|V /Y /S
select_naive (insecure) X X|X X|Xx X||Xx X |X X ||Xx V/
ct_sort X\ XX X X/
ct_sort_mult XV XV X X X/
sort__naive (insecure) X X|X X|X X|[|X X |X X ||Xx V
hacl_utility (x11) SN NN |/
openssl_utility (x13) A A A A A I A A A A A
tea_enc & dec (x2) A A A A A N A A A A | A4

ct_select_vl can be compiled to insecure binary (contradict [1])

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0|cl-3.9|cl-7.1||gcc-5.4|gcc-8.3 ||arm-gcc

00 03|00 03|00 03||00 03 |00 03 ||00 03
ct_select_vl XV X\ XY VI
ct_select_v2 XV XV X||v V|V V||V O/
ct_select_v3 N XWX S
ct_select_v4 XV XV X||v V|V ||V O/
select_naive (insecure) X X|X X[X X||Xx X |X Xx|Xx V
ct_sort XWX/ X X
ct_sort_mult XWX ® ® X v
sort__naive (insecure) X X|X X|X X||X X |X X|X V
hacl_utility (x11) S YW N N |/
openssl_utility (x13) A A A A A I A A A A A
tea_enc & dec (x2) A A A A A A A A

ct_sort compiled with gcc -00 is not secure (out of reach of ct-verif [2])

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Effect of compiler optimizations on CT (extension of [1])

cl-3.0 | cl-3.9 |cl-7.1||gcc-5.4|gcc-8.3 | |arm-gcc

00 03|00 03|00 03|00 03 |00 03 |00 03
ct_select_vl XV XV XY VIV Y/
ct_select_v2 v XV XV XV V|V /Y S
ct_select_v3 /I X XN N |
ct_select_v4 XV XV XV V|V /Y /S
select_naive (insecure) X X|X X|Xx X||Xx X |X X ||Xx V/
ct_sort OO E A2 RN
ct_sort_mult OO A A A L
sort__naive (insecure) X X|X X|X X|[|X X |X X ||Xx V
hacl_utility (x11) A A A A A A A A AN A
openssl_utility (x13) A A A A A I A A A A A
tea_enc & dec (x2) A A A A A N A A A A | A4

clang backend passes break ct_sort (deemed secure by ct-verif [2])

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
[2] “Verifying Constant-Time Implementations.”, Almeida et al. 2016 22/25

Conceptual Limitations

e Loop unrolling — fine for bugs but limits proofs

Implementation Limitations
e No system calls — requires stubs

e No dynamic libraries — statically linked binaries

Experiments
e esp is concretized (like in related work)

e No dynamic allocation — Fixed array length (keys, plaintext)

23/25

Conclusion

Efficient BF/BV for CT at Binary-Level

Experiments on crypto implementations

e BF /(no over-approx) & BV v (no under-approx)

e Sharing for Scaling

e Relational SE
e Dedicated optimizations

e Binary-level > B | N SEC

e No source code needed IS
e Do not rely on compiler : ﬂ ! n Re E

24/25

Spectre (already a prototype)

New properties (e.g. cache model, secret erasure, etc.)

General noninterference

Any idea of new properties or use cases?

25/25

