
We work on closing the gap in

automated bug-finding techniques

between safety and hypersafety.
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Applications to security analysis of

cryptographic programs against

timing attacks.

Safety vs. Security.

• Safety: no bugs (e.g. crash due to a division

by 0) along one execution of the program.

• Security: a program does not leak secret

(e.g. crypto keys) to an attacker.

Relates pairs of executions (2-hypersafety).

Challenges of constant-time analysis:

• 2-hypersafety ⇒ requires to reason

about pairs of executions efficiently

• Not necessarily preserved by

compilers ⇒ requires binary analysis

In 2018, Spectre attacks [2] exploit

optimizations based on speculative

execution in processors to open new

possibilities for timing attacks, even

in constant-time programs.

Timing attacks exploit the execution time

of a program to leak secret data.

Our contributions [1]:

• Binary-level RelSE, a new relational

symbolic execution technique for constant-

time analysis at binary level

• Based on dedicated optimizations (speedup

of 2 orders of magnitude)

• Implementation in the Binsec/Rel tool:

found 2 new bugs introduced by the

compiler & new security proofs at binary-

level for 296 crypto binaries

Software take an increasing place in our

society and are used in many critical

systems:

• encrypt our communications

• manipulate health data

• secure banking transactions, etc.
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FROM SAFETY TO HYPERSAFETY

Goal.

Adapt automated bug-finding tools for

safety to security (2-hypersafety).

We focus on a crucial 2-hypersafety

property to protect against timing

attacks: constant-time.

Problem.

We have automated bug-finding tools

for safety, but we lack automated bug-

finding tools for 2-hypersafety.
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Constant-time programming ensures that

execution time is independent from secrets.

Implemented in cryptographic libraries like

OpenSSL, BearSSL, Libsodium, etc.

New challenge: Efficiently

model the speculative

behavior of the processor

to protect software against

Spectre attacks.
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It is crucial to ensure not only that these

software are bug-free (safety), but also

that they preserve the confidentiality of

secret data they manipulate (security).

W HEN PROCESSORS SPECULATE AGAINST US

Our contributions (under submission):

• HauntedRelSE: new optimizations for

constant-time analysis under speculation

• Implementation & experiments on crypto

• New attacks & countermeasures

We developed a tool, Binsec/Rel, for constant-

time analysis at binary-level and extended it

to encompass new classes of Spectre attacks.
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