
We work on closing the gap in

automated bug-finding techniques

between safety and hypersafety.

[1] Daniel, L., Bardin, S., & Rezk, T., Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level, IEEE

Symposium Security and Privacy, 2020.

[2] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M.,

Yarom, Y., Spectre Attacks: Exploiting Speculative Execution, IEEE Symposium on Security and Privacy, 2019.

Icons made by Freepik, bqlqn, and becris from Flaticon.

Applications to security analysis of

cryptographic programs against

timing attacks.

Safety vs. Security.

• Safety: no bugs (e.g. crash due to a division

by 0) along one execution of the program.

• Security: a program does not leak secret

(e.g. crypto keys) to an attacker.

Relates pairs of executions (2-hypersafety).

Challenges of constant-time analysis:

• 2-hypersafety ⇒ requires to reason

about pairs of executions efficiently

• Not necessarily preserved by

compilers ⇒ requires binary analysis

In 2018, Spectre attacks [2] exploit

optimizations based on speculative

execution in processors to open new

possibilities for timing attacks, even

in constant-time programs.

Timing attacks exploit the execution time

of a program to leak secret data.

Our contributions [1]:

• Binary-level RelSE, a new relational

symbolic execution technique for constant-

time analysis at binary level

• Based on dedicated optimizations (speedup

of 2 orders of magnitude)

• Implementation in the Binsec/Rel tool:

found 2 new bugs introduced by the

compiler & new security proofs at binary-

level for 296 crypto binaries

Software take an increasing place in our

society and are used in many critical

systems:

• encrypt our communications

• manipulate health data

• secure banking transactions, etc.

CONCLUSION

REFERENCES

BINARY ANALYSIS AGAINST T IMING ATTACKS

INTRODUCTION

CEA LIST, Université Côte d’AzurAUTOMATED PROGRAM ANALYSIS:

FROM SAFETY TO HYPERSAFETY

Goal.

Adapt automated bug-finding tools for

safety to security (2-hypersafety).

We focus on a crucial 2-hypersafety

property to protect against timing

attacks: constant-time.

Problem.

We have automated bug-finding tools

for safety, but we lack automated bug-

finding tools for 2-hypersafety.

\ ?

Constant-time programming ensures that

execution time is independent from secrets.

Implemented in cryptographic libraries like

OpenSSL, BearSSL, Libsodium, etc.

New challenge: Efficiently

model the speculative

behavior of the processor

to protect software against

Spectre attacks.

Compilation

Source Binary

Binary

program

Mathematical 

formula of 

the program

Constraint-solver: 

resolves formula

It is crucial to ensure not only that these

software are bug-free (safety), but also

that they preserve the confidentiality of

secret data they manipulate (security).

W HEN PROCESSORS SPECULATE AGAINST US

Our contributions (under submission):

• HauntedRelSE: new optimizations for

constant-time analysis under speculation

• Implementation & experiments on crypto

• New attacks & countermeasures

We developed a tool, Binsec/Rel, for constant-

time analysis at binary-level and extended it

to encompass new classes of Spectre attacks.

Lesly-Ann Daniel

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/bqlqn
https://www.flaticon.com/authors/becris
https://www.flaticon.com/authors/freepik

