
WeMu: Effective and Scalable Emulation of Microarchitectural Weird Machines

Dries Vanspauwen
DistriNet, KU Leuven

Leuven, Belgium
dries.vanspauwen@gmail.com

Lesly-Ann Daniel
DistriNet, KU Leuven, Belgium

& Eurecom, Biot, France
lesly-ann.daniel@eurecom.fr

Jo Van Bulck
DistriNet, KU Leuven

Leuven, Belgium
jo.vanbulck@kuleuven.be

Abstract
Recent research on Microarchitectural Weird Machines
(µWMs) has shown that microarchitectural optimization fea-
tures, originally exploited for data exfiltration, can also facili-
tate hidden computation. Emerging µWMs, enabled by ded-
icated compilers, have become increasingly practical, evad-
ing conventional analysis tools by executing complex crypto-
graphic algorithms and unpacking malware entirely within the
microarchitectural domain. To address the lack of defensive
capabilities against this growing threat, we introduce WeMu,
the first emulation-based framework specifically designed for
the analysis of µWMs.

WeMu enables security analysts to observe and reverse en-
gineer hidden microarchitectural computations through novel
abstractions that accurately replicate µWM behavior with-
out the overhead and limitations of full microarchitectural
simulation. We validate WeMu’s effectiveness by success-
fully emulating µWMs ranging from basic logic gates to so-
phisticated cryptographic routines consisting of thousands
of gates. WeMu establishes the first practical foundation for
the analysis and reverse engineering of microarchitectural
computations, paving the way for more effective defenses.

1 Introduction

Modern processors achieve remarkable computational perfor-
mance through sophisticated microarchitectural optimization
features such as speculative execution, out-of-order execution,
and complex memory hierarchies. While these optimizations
dramatically improve performance under normal operating
conditions, they also introduce unintended security vulnera-
bilities that can be exploited by attackers [8, 15]. A prominent
class of attacks leveraging such vulnerabilities are timing side-
channel attacks [15, 37], which exploit observable timing dif-
ferences in microarchitectural operations to infer sensitive
information such as cryptographic keys or private data. More
recently, researchers have also demonstrated transient execu-
tion attacks [8, 24, 26, 34, 38, 39], which leverage speculative

and out-of-order execution to violate security boundaries and
leak confidential information through side channels.

Building upon the foundations of transient execution at-
tacks, a new line of research has shifted focus from data ex-
filtration to covert computation. ExSpectre [40] first demon-
strated how transient execution could be used to hide mali-
cious computations in speculative code paths. This concept
has been extended and formalized in subsequent works as Mi-
croarchitectural Weird Machines (µWMs) [14, 21, 22, 43, 44],
which represent a novel computational paradigm that exploits
microarchitectural side effects for stealthy computation. Par-
ticularly, µWMs encode data using Microarchitectural Weird
Registers (µWRs), with all existing implementations employ-
ing cache-based µWRs [14, 21, 22, 43, 44]. These “weird”
registers encode state through cache presence: a memory lo-
cation being cached corresponds to state ‘1’, whereas absence
from cache indicates state ‘0’. Computations occur through
Microarchitectural Weird Gates (µWGs), which leverage tran-
sient execution to perform boolean operations over µWRs.
Specifically, weird gates consist of carefully crafted load pat-
terns that construct transient race conditions following an
exception or mispredicted branch, causing the cache state of
an output µWR to change based on the cache states of the
input µWRs. Recent research demonstrates that µWMs are
becoming increasingly sophisticated and practical, with ad-
vances including complete cryptographic implementations
and an automated compiler that makes µWMs accessible to
non-security experts [44].

A compelling aspect of performing computations in mi-
croarchitectural weird machines is that they remain inherently
invisible to conventional static and dynamic binary analysis
tools. Static analysis tools, like symbolic execution [23], tradi-
tionally model only the architectural CPU state. While recent
work [9, 11, 17, 41, 42] extends symbolic analysis to rea-
son about some microarchitectural effects, these efforts focus
solely on leakage detection, relying on overapproximations
that cannot accurately model µWM computations. Worse, dy-
namic analysis tools that monitor native execution, such as
single-step debuggers, inevitably disrupt the timing-sensitive

1

mailto:dries.vanspauwen@gmail.com
mailto:lesly-ann.daniel@eurecom.fr
mailto:jo.vanbulck@kuleuven.be


behavior critical to µWMs [44]. Similarly, existing emulators
fail to accurately model the microarchitectural effects upon
which µWMs depend [14]. This invisibility to binary analy-
sis tools makes µWMs particularly attractive for obfuscating
computations and concealing malware.

The growing threat posed by µWMs has prompted re-
searchers to explicitly call for defensive mechanisms [43] and
specialized analysis tools [14, 44] to enable understanding
and reverse engineering of these hidden computational sys-
tems. This paper responds to this need by developing WeMu1,
a specialized emulation framework for practical and accurate
µWM analysis. The gap addressed by WeMu is non-trivial.
Indeed, Evtyushkin et al. previously asserted that "emulat-
ing [the microarchitectural effects that µWMs rely on] with
an acceptable precision is extremely difficult as it would
require first to reverse engineer the target hardware plat-
form" [14], suggesting that effective µWM emulation would
require extensive hardware reverse engineering and detailed
cycle-accurate simulations. Our work challenges this asser-
tion by demonstrating that accurate µWM emulation can be
achieved through abstract models that focus on the essen-
tial microarchitectural effects exploited by existing µWM
designs, without requiring extensive, platform-specific hard-
ware reverse engineering or high-overhead and inaccurate
microarchitectural simulators like gem5 [3]. We demonstrate
that WeMu’s abstractions accurately expose the previously
invisible microarchitectural computations, breaking the fun-
damental barrier of µWM analysis and providing a valuable
stepping stone towards effective reverse engineering of state-
of-the-art µWMs.

We implement WeMu as an extensible research prototype
on top of Unicorn, a mature and open-source ISA-level CPU
emulator. Particularly, we extend Unicorn with an infinite,
fully associative cache model and time-bounded transient ex-
ecution following exceptions and Return Stack Buffer (RSB)
mispredictions. Our model introduces a key distinction from
prior work by capturing how cache state dynamically influ-
ences the length of the transient window. Furthermore, we in-
troduce a novel cache-aware transient scheduling abstraction
that emulates transient out-of-order execution effects through
sequential instruction processing, eliminating the need for
complex pipeline simulation while correctly handling the
out-of-order effects that µWGs exploit. We demonstrate the
effectiveness of WeMu’s abstract microarchitectural models
in accurately emulating hidden µWM computations through a
comprehensive evaluation on both hand-crafted and compiler-
generated binaries from prior work [43, 44], ranging from
simple 2-input boolean gates to complex cryptographic com-
putations, including AES rounds and Simon cipher blocks. As
a baseline, we first validate our benchmark µWMs on a recent
Intel Xeon CPU, developing an improved calibration method
to facilitate the reproducibility of prior work. Our results show

1A concatenation of Weird, Emulator and Mu (from microarchitecture).

that WeMu is both effective and scalable. Through cross-
validation against native execution and gem5 simulation, we
reveal that gem5 fails to accurately emulate µWMs while in-
curring substantial performance overhead. In contrast, WeMu
deterministically produces correct computational results in 22
of our 24 evaluation scenarios. The only two failures occur
in iterative cryptographic circuits, where WeMu produces a
single undiagnosed bit error. Nevertheless, these errors only
occur after correct emulation of multiple consecutive rounds
involving tens of thousands of gates. Specifically, our results
show that WeMu correctly emulates µWMs of up to 35,904
gates at an acceptable execution speed of 9.67 minutes – up
to ×177 faster than gem5 – demonstrating its suitability for
practical analysis workflows.

Contributions. To summarize, our main contributions are:

• We propose WeMu, the first analysis framework capable
of accurately emulating hidden µWM computations.

• We extend Unicorn with an abstract cache model and
cache-aware transient scheduling, enabling accurate and
efficient emulation of weird registers and gates.

• We evaluate WeMu’s functional correctness and perfor-
mance on 24 µWMs, demonstrating that it can correctly
emulate circuits of up to 35,904 gates – including com-
plex cryptographic routines – in less than 9.67 minutes.

• We cross-validate WeMu with native execution, intro-
ducing improved calibration methods to facilitate µWM
reproduction.

• We compare WeMu to gem5 simulation, finding that
gem5 fails to accurately emulate weird circuits while
incurring much higher overheads.

Open Science. To ensure the reproducibility of our work
and to enable future science on the security analysis of
µWMs, we open sourced all code and data used in this
paper at https://github.com/driesvanspauwen/wemu/
tree/uasc26-artifact.

2 Background

Cache Hierarchy. Modern processors typically implement
multi-level cache hierarchies, typically featuring three levels
(L1, L2, and L3/LLC), organized as set-associative caches. In
this design, each cache level is divided into multiple sets, with
each set containing several cache lines (ways). A memory
address maps deterministically to a specific set, but it can
occupy any line within that set. When the processor accesses
a memory address, it first checks the cache: if the data is found
in the appropriate set (a cache hit), access is fast – typically
1–4 cycles for L1 cache. If the data is not present (a cache
miss), it must be fetched from a lower cache level or main
memory, which can take 100–300 cycles for main memory.

2

https://github.com/driesvanspauwen/wemu/tree/uasc26-artifact
https://github.com/driesvanspauwen/wemu/tree/uasc26-artifact


Transient Execution. Transient execution occurs when pro-
cessors execute instructions that are never committed to the ar-
chitectural state. The transient window defines the time period
during which processors execute these transient instructions
before detecting that they should not have been executed and
rolling back their effects. Transient execution occurs as a re-
sult of speculative and out-of-order execution. Modern CPUs
employ speculative execution to predict branch outcomes
or data dependencies, allowing them to execute instructions
along predicted paths and avoid pipeline stalls. If a mispredic-
tion is detected, the processor rolls back any changes to the ar-
chitectural state and resumes execution along the correct path.
Additionally, processors execute instructions out-of-order to
maximize performance and utilization of execution units. In
particular, when exceptions occur, instructions following the
exception might have already executed transiently. Critically,
while architectural state is rolled back after transient execu-
tion, microarchitectural changes persist [24, 26].

Various microarchitectural mechanisms can trigger tran-
sient execution, which we call transient primitives. Pre-
vious work has demonstrated five transient primitives in
practical µWM implementations: exceptions [43], Branch
Predictor (BP) [22, 43], Branch Target Buffer (BTB) [43],
RSB [21, 43] and Intel’s Transactional Synchronization Ex-
tensions (TSX) [14, 43]. This section focuses on the two prim-
itives currently supported by WeMu: exceptions and RSB (cf.
§ 4.3). The remaining three are discussed in Appendix A.

Exceptions. Exceptions act as transient primitives by ex-
ploiting out-of-order execution. With this primitive, an
instruction guaranteed to raise an exception is placed
immediately before the code implementing the µWG.
While the exception should terminate execution by trans-
ferring control to an exception handler, modern CPUs
may execute subsequent instructions out-of-order before
the exception is fully processed. Wang et al. typically
leverage division-by-zero exceptions (tmp /= 0) as tran-
sient primitives [43].

Return Stack Buffer. The RSB is a compact per-core hard-
ware stack that predicts return instruction destinations.
On function calls, the processor pushes the return address
(the address of the instruction immediately following the
function call) onto the RSB and uses it to predict the re-
turn destination. As a transient primitive, the RSB can be
exploited by deliberately modifying return addresses on
the stack during function execution. This creates a mis-
match between the predicted destination (stored in the
RSB) and the actual destination (stored on the modified
stack), causing transient execution at the mispredicted
address until the processor resolves the true return desti-
nation [21, 25, 27, 44].

Weird Machines. The concept of exploiting computational
environments for obfuscation purposes predates µWMs and

originates from the broader field of Weird Machines (WMs).
WMs arise when attackers leverage unintended compu-

tational environments within systems to perform arbitrary
computation [4, 35]. These environments are the result of
the gap between a system’s intended behavior and its actual
implementation [13]. For example, researchers have demon-
strated Turing-complete computation through ELF header
processing during program loading [35]. In general, WMs
provide good obfuscation capabilities because (i) they exploit
legitimate features of the target system; and (ii) they imple-
ment high-level computational logic through unconventional
mechanisms that resist reverse engineering [14].

3 Microarchitectural Weird Machines

Recent research has identified microarchitectural optimiza-
tion features as viable computational substrates [14, 40]. This
led to the introduction of µWMs, a specialized type of WMs
that shifts computation to the microarchitecture by leverag-
ing microarchitectural side effects. µWMs consist of three
building blocks: (i) registers; (ii) gates; and (iii) circuits.

Microarchitectural Weird Registers. Instead of using
CPU registers or memory (which are architecturally visible),
µWMs encode data in microarchitectural states, in so called
µWRs. While various microarchitectural components could
be used to encode data [14], all practical implementations use
the cache [14, 21, 22, 43, 44].

In cache-based µWRs, a register’s logical state is encoded
through cache presence of a variable. If the variable is cached,
the state is ‘1’; otherwise, it is ‘0’. The state of a µWR is mod-
ified through two operations: (i) loading the variable brings
it into the cache, setting the state to ‘1’; and (ii) flushing the
variable evicts it from cache, setting the state to ‘0’. Reading
a µWR requires a timed memory read. By comparing the vari-
able’s load time against a threshold, cache hits (state ‘1’) can
be distinguished from cache misses (state ‘0’).

Microarchitectural Weird Gates. µWGs execute boolean
operations on µWRs. We discuss first how they rely on tran-
sient execution to perform architecturally invisible computa-
tions, then we give representative examples of µWGs encod-
ing AND, OR and NOT gates.

µWGs encode their computational results in µWRs dur-
ing a transient execution window. They exploit data races in
transient execution, causing output µWRs to be conditionally
updated before transient execution is rolled back, depending
on the value of input µWRs. As the microarchitecture is not
impacted by the rollback, µWRs persist after the rollback,
allowing the results to be extracted later through timing mea-
surements. We now demonstrate how data races can establish
boolean operations for the AND, OR and NOT gates. For these
µWGs to operate correctly, the output variable must always

3



1 Out[In2[In1[0]]] = 0;

(a) AND Implementation [43]

In1 In2
Out

tRollback

(b) AND(1, 1)

In1

t

In2

Rollback

(c) AND(1, 0)

Figure 1: AND gate implementation and data race visualiza-
tion. Squares indicate loads, arrows stores.

be flushed initially (state ‘0’), and the architectural values of
all µWRs must be zero.

AND Gate [43]. Figure 1a demonstrates an implementation
of an AND gate. The inputs (In1, In2) and output (Out)
are cache-based µWRs. As architectural values of µWRs
are zero, the listing just stores zero to Out[0]. From a mi-
croarchitectural perspective however, storing to Out[0]
causes it to be cached, changing the output µWR state
to ‘1’. Whether this store can be performed within the
transient window, depends on the cache state of the in-
puts, as illustrated in Figs. 1b and 1c. If both inputs are
cached (1b), their values can be retrieved quickly enough
to issue the store to Out[0] within the transient window
(before the rollback). This causes Out[0] to be cached,
setting the output µWR to ‘1’. Conversely, if one of the
inputs is not cached (1c), loading it exceeds the transient
window. A rollback will flush the pipeline before the
input value is available, preventing the store to Out[0]
and leaving it in its initial, uncached state of ‘0’.

OR Gate [43]. Figure 2a demonstrates the implementation of
an OR gate. Unlike the AND gate’s sequential loads, the
OR gate employs two independent store operations that
an out-of-order processor can execute simultaneously.
When both inputs are cached (2b), both loads execute
quickly and Out[0] is written. Critically, when only one
input is cached (2c), the processor can complete the store
depending on this input quickly while waiting for the
slow cache miss of the other input to resolve. Therefore,
if at least one of the inputs is cached, the output will be
cached as well, achieving the desired OR functionality.

NOT Gate [43]. Unlike the AND and OR gates which rely on
fixed transient window lengths, the NOT gate exploits a
variable-length transient window that adapts based on
input cache state. Figure 3a demonstrates the NOT gate
implementation, where Aux[0] is an auxiliary variable
initially flushed. Rather than using an immediate division
by zero as in AND and OR gates, it uses a division by
zero with a dependency on the input µWR (line 1). This
dependency enables a variable transient window length,
as visualized by Figs. 3b and 3c When In[0] is cached
(3b), it loads quickly, creating a short window during

1 Out[In1[0]] = 0;
2 Out[In2[0]] = 0;

(a) OR Implementation [43]

In1

In2

Out

tRollback

(b) OR(1, 1)

In2

t

In1

Out

Rollback

(c) OR(0, 1)

Figure 2: OR gate implementation and data race visualization.
Squares indicate loads, arrows stores.

1 tmp /= In[0]
2 Out[Aux[0]] = 0;

(a) NOT Implementation [43]

t

Aux

Rollback

(b) Not(1)

t

Aux
Out

Rollback

(c) Not(0)

Figure 3: NOT gate implementation and data race visualiza-
tion. Squares indicate loads, arrows stores.

which the cache miss from Aux[0] cannot resolve. As a
result, the store to Out[0] does not occur, and the output
remains uncached. In contrast, when In[0] is not cached
(3c), the window is extended with the time required to
resolve the cache miss from Aux[0], allowing the store
to Out[0] to complete and the output to be cached.

Microarchitectural Weird Circuits. Transient execution
imposes temporal constraints that limit the computational
complexity achievable within a single µWG. To overcome this
limitation, Microarchitectural Weird Circuits (µWCs) chain
multiple µWGs together, each operating within its own tran-
sient window. Data flows between gates when they share the
same memory address (pointing to the same cache line), al-
lowing the output of one µWG to serve as input for the next
through cache presence state [14].

Flexo Encoding. Wang et al. [44] significantly enhanced
µWM performance and accuracy through their Flexo frame-
work, which computes arbitrary N-input boolean functions
within a single transient window (where N depends on the
CPU architecture, typically 4). Flexo employs differential
encoding, representing each logical value w using two wires
(w− and w+) stored in separate µWRs. This encoding enables
the transformation of logical functions into inversion-free
minterm canonical form (sum of products), addressing two
critical limitations: (i) it increases the computational complex-

4



ity achievable within individual transient windows, and (ii) it
resolves the incompatibility between inverting and non-invert-
ing logic within single transient windows. This incompatibil-
ity previously arose because NOT gates require variable-length
transient windows while AND and OR gates operate with fixed-
length windows, forcing their combination to span separate
transient windows.

Wang et al. complemented the Flexo framework with an
automated compiler that transforms high-level C/C++ code
into optimized Flexo µWMs, making these techniques acces-
sible to non-experts and enabling complex implementations
such as cryptographic algorithms.

4 Problem Statement

Recent µWM research has demonstrated obfuscation systems
that challenge conventional malware analysis techniques. This
section examines two representative obfuscation applications
from prior work (§ 4.1) and explores why existing analysis
approaches struggle with such systems (§ 4.2). We then pro-
pose our solution to address this analysis gap and outline the
specific objectives for developing our analytical tool (§ 4.3).

4.1 µWMs Adversary Applications
Prior work [14, 44] has suggested concrete µWM-based ob-
fuscation applications with the purpose of evading both static
and dynamic analysis approaches.

Weird Obfuscation System. Evtyushkin et al. [14] devel-
oped an obfuscation system that conceals a reverse shell in
a benign ping processing program. The reverse shell is AES-
encrypted and stored alongside the encryption key, which it-
self is XOR-encrypted with a one-time pad. When the program
receives ping payloads, it uses them as potential decryption
keys in a TSX-based XOR µWM to attempt recovery of the
encryption key and decrypt the reverse shell. For incorrect
payloads, the µWM is guaranteed to abort transient execution
through a division-by-zero error.

µWM-Enhanced UPX. Executable packers compress bi-
naries to reduce file size while providing basic obfuscation
through self-extracting compressed formats. Wang et al. ex-
tend UPX,2 one of the most widely used packers [18], to inte-
grate µWMs into the unpacking process. Their modifications
encrypt compressed payloads and use µWM-based decryption
during unpacking, hiding the decryption computation entirely
within the microarchitectural state.

Obfuscation Effectiveness. Both applications are effective
in obfuscating programs by hiding cryptographic operations
in the microarchitectural state. µWMs perform computations

2https://upx.github.io/

that appear to analysis tools as ordinary memory loads and
data dependencies – often in dead code paths – making the
actual cryptographic operations difficult to identify. During
the cryptographic operation, the computational state exists
entirely within microarchitectural components like the cache,
remaining invisible to traditional binary analysis techniques
that operate solely on architectural abstraction.

4.2 µWM Analysis Challenges
Analyzing µWMs requires modeling the underlying microar-
chitecture with sufficient precision. This presents a consider-
able challenge for analysis tools, as modern commercial CPUs
feature proprietary, chip-specific, and highly intricate microar-
chitectures that have been described as “extremely difficult”
to emulate accurately [14]. Consequently, analysts encounter
a fundamental trade-off: while enhancing microarchitectural
fidelity can improve analysis precision, it also requires signifi-
cant reverse engineering and development efforts, renders the
analysis approach inherently more chip-specific, and incurs a
considerable performance penalty.

This section reviews standard binary analysis techniques,
including symbolic execution, single-step debugging, hard-
ware emulation, and hardware simulation, assessing their cur-
rent limitations in facilitating the analysis of µWMs.

Symbolic Execution. Symbolic Execution (SE) [23] ab-
stracts over input values by treating them as symbolic vari-
ables. As the program is executed using symbolic inputs,
a path constraint (formula) is built for each possible execu-
tion path. This technique provides strong formal guarantees
and allows reasoning about entire classes of inputs. Some of
the most widely recognized SE tools include angr [36] and
KLEE [6], but their focus on the architectural domain makes
mainstream SE tools insufficient for analyzing microarchitec-
tural computations.

Recent work has extended SE tools to model caches [5,
12], microarchitectural side-channels [16, 20] and speculative
execution [9, 11, 17, 41, 42]. However, these tools focus on
detecting microarchitectural leakage rather than accurately
modeling microarchitectural computation. As a result, they
tend to produce abstract models that prioritize soundness over
the precision required for effective µWM analysis. Moreover,
SE inherently suffers from state explosion, making these tools
unsuitable for scalable µWM analysis.

Debugger Inspection. Single-step debuggers inspect and
manipulate a program’s architectural state during execution.
Prior work [44] has observed that single-step debugging in-
herently breaks µWM computations by interfering with their
transient execution, cache state, and timing behavior. In prin-
ciple, more targeted approaches could place breakpoints only
at µWM entry and exit points to avoid disrupting the compu-
tational environment. However, this strategy would require an

5

https://upx.github.io/


understanding of µWM behavior in the binary and execution
on hardware representative of the target microarchitectural
environment, capturing only input/output behavior at best
without providing insight into the actual computations.

Microarchitectural Simulation. Microarchitectural simu-
lators aim to reproduce microarchitectural behavior in detail,
enabling cycle-accurate analysis of complex interactions such
as caching, speculative execution, and out-of-order processing.
A prominent example is gem5 [3], a hardware simulator capa-
ble of modeling a wide range of targets and microarchitectural
components. Its microarchitectural details makes it attractive
for µWM analysis. Indeed, Ayoub et al. [1] successfully used
gem5 to reproduce Spectre-style attacks. However, our evalu-
ation (§ 6.3) reveals significant limitations for µWM analysis.
First, the level of detail incurs substantial computational over-
head, with execution orders of magnitude slower than real
hardware, severely limiting practicality for program analysis.
More critically, gem5 cannot guarantee accurate simulation of
proprietary real-world microarchitectures with closed-source
hardware implementations.

Hardware Emulation. Hardware emulators – such as
QEMU [2] and Unicorn [33] – reproduce system behavior at
the Instruction Set Architecture (ISA) level, enabling cross-
platform execution of compiled programs. Unlike hardware
simulators, emulators typically lack built-in microarchitec-
tural modeling, making existing emulators unsuitable for an-
alyzing µWMs. For instance, Unicorn is a lightweight CPU
emulation framework based on QEMU that focuses exclu-
sively on ISA-level emulation. However, Unicorn provides an
extensible hooking mechanism that allows interception and
modification of instruction execution, offering a foundation
for custom microarchitectural extensions.

4.3 Goals
µWM literature shows significant improvements in computa-
tional complexity, accuracy and performance of µWMs. Fur-
thermore, Wang et al.’s automated µWM compiler [44] makes
µWMs accessible to non-security experts. Given these trends,
existing literature consistently emphasizes the need for effec-
tive detection and analysis tools [14, 43, 44].

This work addresses the analysis challenge by develop-
ing an emulator capable of emulating the microarchitectural
effects that µWMs exploit for computation. Our approach
enables observing, analyzing and reverse engineering µWM
computations that would remain hidden when using existing
binary analysis approaches.

A Unicorn Extension. We select Unicorn as our base em-
ulation platform and extend its ISA-level capabilities with
microarchitectural models. Rather than replicating complete

microarchitectures, our implementation is based on abstract
models that capture only the essential microarchitectural ef-
fects exploited by µWMs. This targeted approach reduces im-
plementation complexity and runtime overhead, while main-
taining emulation accuracy. Unicorn’s lightweight architec-
ture and extensible hooking system facilitate integration of
these microarchitectural features, making our tool easily ex-
tensible with new µWM designs.

Microarchitectural Emulation Scope. µWMs feature ex-
tensive flexibility in their implementation as they can poten-
tially exploit numerous microarchitectural components for en-
coding weird registers or gates. This natural flexibility makes
it practically infeasible to create universal analysis tools cov-
ering all possible µWMs. Instead, we scope our emulation
to support the most practical and accurate µWMs demon-
strated to date, including those generated by state-of-the-art
automated µWM compilers [44].

First, we implement support for cache-based µWRs, which
are the only type used in existing practical µWM implemen-
tations [14, 21, 22, 43, 44].

Second, we prioritize RSB-based transient primitives due
to their integration into the Flexo framework [44]. Flexo-
generated µWMs achieve the highest accuracy and execution
speeds reported in current literature, while the Flexo compiler
significantly increases the accessibility of µWMs.

Finally, we include exception-based transient primitives,
based on Wang et al.’s findings [43]. Their comparative anal-
ysis shows exception-based µWMs achieve 99.99% accuracy,
outperforming BP (94.79%) and BTB (93.52%) approaches.

5 WeMu’s Modeling of the Microarchitecture

This section covers the core technical contributions of this
work, discussing the design and implementation of WeMu.
We identify the specific microarchitectural behaviors essential
to µWM operation and describe the corresponding models
we develop to emulate these effects. WeMu’s architecture en-
ables emulation of four key microarchitectural mechanisms:
(i) a minimalistic cache model that captures the essence of
µWR without the complexity of modern hardware cache im-
plementations (§ 5.1); (ii) a transient-execution mechanism
to capture timing-dependent data races between memory op-
erations and transient window constraints (§ 5.2); (iii) a novel
cache-aware transient scheduling abstraction that captures the
essence of out-of-order execution without requiring complex
pipeline simulation (§ 5.3); and (iv) a model of the time-stamp
counter (§ 5.4). Our WeMu implementation comprises 897
lines of Python code for the emulator and 1,462 lines for the
evaluation framework.

6



5.1 Single-Level Infinite Cache Model

In order to emulate µWRs, WeMu needs to include a model
of the cache. When modeling the cache in WeMu, we fo-
cus on the specific microarchitectural effects that µWRs ex-
ploit, rather than implementing full cache complexity. Modern
cache implementations are defined by two key design charac-
teristics (cf. § 2) that must be taken into account.

First, with respect to cache hierarchy, current µWR imple-
mentations depend only on whether a variable is present in
the cache, regardless of the specific cache level. Hence, a
single-level cache model suffices for WeMu.

Second, cache organization, including placement and re-
placement policies, can directly affect the correctness of
µWMs. When two µWRs map to the same cache set, opera-
tions on one of them may evict the other if the set reaches ca-
pacity, causing µWM failure. In existing literature, authors try
to actively avoid this unwanted and unintended behavior [44].
To prevent these failures during emulation, WeMu implements
an infinite-size cache model. Since existing µWMs explicitly
manage cache state through loads and flushes rather than re-
lying on eviction-based computation, an infinite cache model
captures their intended behavior.

Implementation of a Single-Level Infinite Cache. We
extend Unicorn with a single-level infinite-size cache model
by implementing the cache as a set of addresses. The model
is parameterized by two constants: tmiss and thit , representing
the cycle counts for cache misses and hits respectively.3

Integration with Unicorn occurs through hooks on mem-
ory operations – load and store operations trigger the cache’s
update(a) method which adds address a to the cache, while
flush operations call f lush(a) which removes address a. The
cache model is implemented as a plugin, enabling straightfor-
ward replacement with more sophisticated models to accom-
modate potential evolution of µWMs.

5.2 Transient Execution Support

µWGs encode architecturally invisible boolean operations via
transient data races. To faithfully emulate µWGs in WeMu, we
must extend the framework with several components: (i) mod-
els of microarchitectural components that may trigger tran-
sient execution; (ii) a mechanism to capture transient data
races; and (iii) a rollback system that restores architectural
state without flushing microarchitectural effects.

WeMu adapts and extends the transient model proposed
by Revizor [31], a framework for testing microarchitectural
leakage in CPUs against speculation contracts, incorporating
refined timing precision essential for modeling the subtle data
races in µWM computations.

3These parameters are used for modeling data races, cf. next section.

Transient Primitives. WeMu supports both exception-
based and RSB-based transient primitives. For exceptions,
we intercept division-by-zero errors from Unicorn and trigger
transient execution of subsequent instructions.

For RSB-based primitives, we model the RSB as a stack
that tracks return addresses. On function calls, we push the
return address; on returns, we compare the RSB prediction
with the actual stack address. Address mismatches trigger
transient execution at the mispredicted location.

Timing Parameters. µWGs rely on transient data races
where memory operations compete against the transient win-
dow length to conditionally update µWRs (cf. Figs. 1b, 1c,
2b, 2c, 3b and 3c). In real processors, the transient win-
dow length depends on multiple factors including return or-
der buffer size, instruction complexity, and data dependen-
cies [40]. Accurately modeling these factors would require
detailed processor-specific reverse engineering and complex
pipeline simulation. Instead, WeMu employs configurable
timing parameters that abstract these complexities away, but
still accurately capture transient data races involved in µWM.

Table 1 shows WeMu’s default configuration parameters.
These parameters capture timing of cache hits (thit), cache
misses (tmiss), and other instructions (tother), and the base tran-
sient window length (ttrans). The default values for these pa-
rameters are chosen such that multiple normal instructions
and cache hits fit within one transient window, but a single
cache miss does not, as required by many µWGs. Note that to
accurately model the transient data races exploited by µWGs,
only the relative differences between parameter values must
be correct; accuracy of absolute values is not required.

Table 1: WeMu’s default timing parameters for modeling
transient data races.

Param. Value (# cycles) Description

thit 1 Cache hit
tmiss 300 Cache miss
tother 1 Other instructions
ttrans 250 Base transient window length

Dynamic Transient Window Length. The fixed transient
window length introduced in Table 1 is sufficient to correctly
capture data races for simple gates like AND (Fig. 1a). How-
ever, the NOT gate (Fig. 3a) exploits the fact that transient
windows vary based on the cache state of the input. To cap-
ture this behavior, we add a dynamic transient window length
to WeMu. When a division-by-zero exception depends on a
variable (e.g., tmp /= In[0]), WeMu dynamically adjusts
the effective transient window length (∆trans) based on the
variable’s cache presence. If the variable is cached, the tran-
sient window is simply set to the base transient window length

7



∆trans = ttrans. If the variable is not cached, WeMu extends the
window by adding cache miss latency to the default length:
∆trans = ttrans + tmiss. This accounts for the additional time
required to resolve the divisor before triggering the exception.
Using default values from Table 1, this extension increases
the limit from 250 to 550 cycles, permitting a cache miss (300
cycles) to complete within the transient window only if the
input variable is not cached.

Transient State and Rollback. When in transient execu-
tion mode, WeMu commits the effects of transiently executed
instructions directly to the architectural state tracked by Uni-
corn, unlike actual hardware where such effects are buffered
and remain uncommitted. This design reduces implementa-
tion complexity and allows analysts to examine the effects of
transiently executed instructions interactively using Unicorn’s
familiar interface.

Rollbacks after reaching the end of the transient window
are implemented using a checkpointing mechanism similar
to Revizor [31] and SpecFuzz [30]. The emulator creates
a checkpoint before transient execution begins, which can
later be resumed. When transient execution is rolled back
WeMu reverts the architectural state to this checkpoint, while
preserving microarchitectural state changes.

In-Order Transient Data Races (AND, NOT). With all the
required mechanisms in place, we can now reason about how
WeMu uses the parameters from Table 1 to effectively emulate
simple, in-order transient data races as employed in the AND
and NOT gates (cf. Figs. 1 and 3). When a transient primitive
is activated, WeMu enters transient execution mode. WeMu
first determines the effective transient window length ∆trans
(as explained above) and subsequently keeps track of the
amount of clock cycles executed transiently as a transient
depth (dtrans). At each sequential instruction, dtrans is updated
according to the timing parameters defined in Table 1. When
dtrans exceeds ∆trans, transient execution is rolled back.

5.3 Cache-Aware Transient Scheduling

The in-order transient model described in the previous section
works for the AND and NOT gates, where data dependencies
are established through sequential load and store operations.
However, the OR gate relies on out-of-order execution to pro-
cess two independent instruction sequences simultaneously.
Hence, the simple sequential transient model proves insuffi-
cient here: it would prematurely end transient execution after
encountering a cache miss, without attempting to execute the
following instructions like a real out-of-order processor would.
This section presents an abstraction that captures the essential
effects underlying OR gates and similar constructs, avoiding
the complexity of modelling a full out-of-order pipeline.

1 B1:
2 movzx rcx, byte [r13] ; Load input 1 (r13)
3 add rcx, r15 ; Add output address (r15)
4 mov al , byte [rcx] ; Load output to dummy
5 B2:
6 movzx rcx, byte [r14] ; Load input 2 (r14)
7 add rcx, r15 ; Add output address (r15)
8 mov dl , byte [rcx] ; Load output to dummy

Listing 1: x86 OR gate assembly implementation (cf. Fig. 2a).
Input registers addresses are in r13 and r14 and output is in
r15. The colors show how an out-of-order processor applies
renaming to the rcx register, differentiating true dependencies
(same color) from false dependencies (different colors).

OR Gate on Actual Hardware. To examine how out-of-
order processors execute the OR gate (Fig. 2a), we analyze
a corresponding assembly implementation in Listing 1. This
implementation deviates slightly from the pseudocode by
caching the output µWR (address in r15) via a load to a
dummy register (al and dl), rather than by storing zero to the
output register, as done in the pseudocode. This implementa-
tion difference aligns with prior works’ code artifacts [43, 44].

The listing contains two similar code blocks B1 (lines 2-4)
and B2 (lines 6-8), each handling one input. Each block loads
the input µWR’s architectural value (always zero) into rcx,
adds the output address to rcx, then loads this output address
to a dummy register, causing it to be cached.

Inside block B1, the use of rcx introduces Read-After-
Write (RAW) dependencies between lines 2 and 3, as well
as lines 3 and 4. Block B2 is analogous. The processor can-
not resolve RAW hazards and thus processes the instructions
within a block sequentially. However, between the two blocks
themselves there are only false dependencies: Write-After-
Write (WAW) hazards (between lines 2 & 6 and 3 & 6)
and Write-After-Read (WAR) hazards (between lines 4 &
6). Through register renaming, the processor assigns different
physical registers to rcx in each block, enabling out-of-order
execution. Thus, B2 can begin executing before B1 completes,
particularly when B1 encounters a cache miss at line 2. This
mechanism ensures that a cache hit from either input will
eventually cache the output.

Overflowing Instruction Tracking. Rather than emulating
a full out-of-order execution engine, we introduce a simpli-
fied abstraction called cache-aware transient scheduling. This
model captures the essential microarchitectural effects of out-
of-order execution by processing instructions sequentially.
The core idea is to identify instructions that cannot complete
within the transient window (we call them overflowing instruc-
tions) and to skip all instructions with RAW dependencies
on overflowing instructions. An instruction is classified as
overflowing for one of two reasons:

1. Intrinsic latency: The instruction has an intrinsic la-
tency from performing its own effects (predetermined

8



Algorithm 1: Cache-aware transient scheduling. rdst and
rsrc denote instruction destination and source register sets,
loadaddr denotes the load address in case the instruction
is a load.
over f lowingregs← /0

over f lowingaddr ← /0

while dtrans < ∆trans do

(rdst , rsrc, loadaddr)← parse next instruction
t← instruction’s intrinsic latency

if match between rsrc and over f lowingregs 1 RAW
add rdst to over f lowingregs

else if t > ∆trans−dtrans 2 Intrinsic latency overflows
add rdst to over f lowingregs
add loadaddr to over f lowingaddr

else 3 Non-overflowing instr executes normally
remove rdst from over f lowingregs
execute instruction
dtrans += t

update cache with over f lowingaddr
rollback architectural state

using configuration values from Table 1) which exceeds
the transient window length, e.g., due to a cache miss for
a load instruction.

2. RAW dependencies: The instruction is reading a regis-
ter last written by an overflowing instruction.

Algorithm 1 details how cache-aware transient scheduling
works. WeMu tracks dependencies on overflowing instruc-
tions using a list of registers, denoted over f lowingregs. When
an instruction overflows – either due to a RAW dependency
or because its intrinsic latency exceeds the transient window –
WeMu adds all of its destination registers to over f lowingregs.
This allows overflow conditions to propagate through the
instruction stream, similar to e.g. taint tracking.

On actual hardware, instructions that overflow due to RAW
dependencies do not begin executing, because they cannot ac-
cess their required input data. WeMu reflects this by skipping
such instructions (case 1 ).

In contrast, instructions that overflow due to instrinsic la-
tency do start executing on actual hardware, and while their
architectural results are never committed, they might cause
microarchitectural changes. For instance, when a cache miss
exceeds the transient window, its asynchronous load opera-
tion can still cause the loaded address (loadaddr) to be cached,
even after the rollback. WeMu reflects this by storing those
addresses in a separate list, over f lowingaddr, and applies the
corresponding cache updates only after the transient window
ends (case 2 ).

Example. Listing 2 provides a curated WeMu execution
trace demonstrating the effectiveness of cache-aware tran-
sient execution on the OR gate assembly implementation of

Execution mode: transient (limit: 250)
; B1
Executing line 2: movzx rcx , byte ptr [r13]

CACHE MISS
2 Skipped: overflows (rcx now overflowing)

Executing line 3: add rcx , r15
1 Skipped: RAW dep. with overflowing rcx

Executing line 4: mov al , byte ptr [rcx]
1 Skipped: RAW dep. with overflowing rcx

; B2
Executing line 6: movzx rcx , byte ptr [r14]

CACHE HIT
3 rcx overwritten (now non −overflowing)

Executing line 7: add rcx , r15
Executing line 8: mov dl , byte ptr [rcx]

CACHE MISS
2 Skipped: overflows (dl now overflowing)
Output gets cached during async load

Output value: 1 (r15 cached)

Listing 2: Curated WeMu execution traces for exception-
based OR gate (Listing 1) with inputs (0, 1), demonstrating
cache-aware transient scheduling in action.

Listing 1 with inputs ‘0’ (r13 is not cached) and ‘1’ (r14
is cached). The cache miss for the first input r13 (line 2 in
Listing 1) is overflowing, as its intrinsic latency of 300 cy-
cles exceeds the transient window length of 250 cycles. This
causes rcx to be added to over f lowingregs (case 2 ). Due
to RAW dependencies with rcx, lines 3 and 4 are skipped
(case 1 ).

The second input r14 is loaded in line 6, creating a WAW
dependency with line 2 because they both use rcx as desti-
nation register. Real processors handle this through register
renaming and simultaneous execution. We emulate a similar
effect by allowing non-overflowing instructions to “overwrite”
overflowing registers (case 3 ). When a non-overflowing in-
struction writes to a overflowing register (line 6), we remove
the register from over f lowingregs and execute the instruction
normally. In real out-of-order processors, this overwriting
would cause correctness issues since older instructions might
expect the previous rcx value. However, our transient model
avoids this problem because older instructions are either ex-
ecuted immediately or permanently skipped – they never re-
main waiting for values that could be overwritten.

Note that this strategy applies exclusively to transient out-
of-order execution. Using it for non-transient execution would
violate ISA-level correctness, as we rely on skipping instruc-
tions that should never be omitted architecturally. During
transient execution, however, skipping is permissible because
instructions exceeding the transient window would effectively
be skipped on actual hardware as well, and we restore the
checkpoint upon aborting transient execution anyway.

5.4 Time-Stamp Counter Support
Existing µWM implementations rely on timed memory reads
to extract cache-encoded data back into architectural state.

9



These timing measurements use the x86 rdtscp instruction to
read the processor’s time-stamp counter and determine mem-
ory access latency. The typical approach reads the counter
before and after accessing a target variable, then compares
the cycle difference against an experimentally determined
threshold to distinguish cache hits from misses.

Since Unicorn does not model timing behavior, WeMu im-
plements a global time-stamp counter which is incremented
for every instruction according to the timing parameters intro-
duced in the transient model (Table 1). When WeMu encoun-
ters an rdtscp instruction, it intercepts the call and writes the
current counter value to the appropriate registers, simulating
the instruction’s behavior on actual hardware. As with the
transient model, only relative timing differences are relevant,
eliminating the need for cycle-accurate processor modeling.

5.5 WeMu’s Analysis Capabilities

WeMu offers analysts three key analytical capabilities for
examining microarchitectural weird machines. First, it en-
ables inspection of transiently executed instructions through
Unicorn’s familiar interface. While real processors buffer
transient effects without committing them to architectural
state, WeMu directly commits these transient effects, mak-
ing them immediately visible for analysis. Second, analysts
can directly examine WeMu’s microarchitectural components
(cache, RSB, time-stamp counter) to understand how µWMs
manipulate their states. Third, WeMu provides comprehen-
sive and extensible emulation logging, generating detailed
execution traces (cf. Listing 2) that can be configured to cap-
ture specific instruction ranges or microarchitectural events of
interest, such as transient window timing behavior, cache hits
and misses, etc. Given these capabilities, WeMu transforms
the typically invisible “opaque box” microarchitectural do-
main into an observable, debuggable “clear box” environment
where analysts can step through and inspect state at all times.

6 Evaluation

This section evaluates WeMu’s effectiveness as an analysis
tool and validates our design choices. We aim to address the
following research questions:

RQ1 Reproducibility. We examine the reproducibility of
prior µWMs on hardware different from that used by the
original authors and identify the calibrations required for
successful reproduction.

RQ2 Effectiveness. We examine WeMu’s functional correct-
ness by verifying that it produces identical computational
results to µWMs executing on real hardware across vari-
ous implementations from previous work [43, 44].

RQ3 Scalability. We assess WeMu’s scalability by includ-
ing in our benchmark µWMs ranging from single gate

logic functions to the most complex circuits in literature,
spanning thousands of gates.

RQ4 Performance. We analyze WeMu’s execution perfor-
mance to determine whether it achieves speeds suitable
for practical analysis workflows.

RQ5 Comparison with gem5. We evaluate gem5 as an al-
ternative emulation framework, examining its limitations
for µWM analysis regarding functional correctness and
execution speeds.

Our evaluation benchmark comprises all exception-based [43]
and RSB-based [44] µWMs that fall within WeMu’s scope,
totaling 24 implementations. All experiments are conducted
on a server equipped with an Intel Xeon Gold 5515+ CPU at
a base frequency of 2.0 GHz, running Ubuntu 24.04.2 LTS.

6.1 Native µWM Reproduction (RQ1)

Before evaluating WeMu, we validate that the original µWMs
achieve high accuracy on our testbed under native execution,
confirming the correctness of our baseline. This independent
reproduction additionally contributes to the field by validating
the results of prior work [43, 44].

Calibration. µWM implementations require microarchitec-
ture-specific calibration to achieve high accuracy, as acknowl-
edged in existing work [43, 44]. This calibration involves
tuning parameters that control µWM behavior. For instance,
exception-based µWMs implement configurable delays after
each transient window to ensure completion of asynchronous
operations, such as loads issued during transient execution to
cache output µWRs. We determine optimal calibration by ex-
ecuting µWMs over a range of different parameter values and
selecting the configuration achieving the highest accuracy.

Appendix B provides a detailed discussion of our grid
search calibration methodology, parameter sensitivity analy-
sis, and our optimal configuration findings.

Results. Table 2 presents the native accuracy results for all
tested µWMs. Exception-based gates generally achieve high
accuracies (> 99.7%), with one notable exception: the XOR
gate consistently fails for the (1,1) input combination, yielding
only 75.179% overall accuracy despite extensive parameter
tuning. RSB-based gates achieve accuracies slightly below
those reported in existing work (≥ 97.8% [44]) but remain
sufficiently high to validate correct implementation.

Overall, the results in Table 2 clearly demonstrate that, fol-
lowing suitable parameter calibration, the µWMs explored
in prior work can be reliably reproduced and may pose a
real threat on commodity hardware. More extensive parame-
ter tuning could likely further improve these results, though
hardware optimization is not the focus of this evaluation.

10



Table 2: Evaluation results of exception-based and RSB-based
µWMs, listing amount of gates, average speed, and accuracy
for native execution; and average speed and emulation suc-
cess (✓) or failure (✗) for emulated execution. Measurements
are taken over 1,000,000 (‡), 1,000 (†), or 50 (✠) iterations.
Circuits with Error Correction (EC) are indicated.

Native Emulated

Computation # µWG Speed (s) Acc. Speed (s) Corr.

E
xc

ep
tio

n-
ba

se
d

ASSIGN ‡ 1 1.6E-6 99.98% 16E-3 ✓
AND ‡ 1 1.6E-6 99.98% 16E-3 ✓
OR ‡ 1 1.6E-6 99.99% 16E-3 ✓
NOT ‡ 1 2.6E-6 99.97% 42E-3 ✓
NAND ‡ 3 7.4E-6 99.89% 91E-3 ✓
XOR ‡ 5 13.7E-6 75.18% 374E-3 ✓

(0, 0) —”— —”— 99.99% —”— ✓
(0, 1) —”— —”— 99.97% —”— ✓
(1, 0) —”— —”— 99.97% —”— ✓
(1, 1) —”— —”— 0.54% —”— ✓

MUX ‡ 6 9.0E-6 99.71% 94E-3 ✓

R
SB

-b
as

ed

AND ‡ 1 703E-9 94.17% 14E-3 ✓
OR ‡ 1 809E-9 94.51% 14E-3 ✓
NOT ‡ 1 707E-9 93.49% 12E-3 ✓
NAND ‡ 1 816E-9 93.11% 14E-3 ✓
XOR ‡ 1 788E-9 94.67% 15E-3 ✓
XOR3 ‡ 1 935E-9 94.89% 21E-3 ✓
XOR4 ‡ 1 1.8E-6 94.65% 32E-3 ✓
MUX ‡ 1 855E-9 93.39% 17E-3 ✓
ALU (EC) ‡ 32 16.7E-6 100.0% 311E-3 ✓
8-bit ADD ‡ 21 14.6E-6 94.78% 245E-3 ✓
16-bit ADD ‡ 66 41.2E-6 97.82% 630E-3 ✓
32-bit ADD ‡ 150 91.8E-6 97.43% 1.3 ✓
SHA-1 round (EC) † 544 250.1E-6 100.00% 4.5 ✓
AES round (EC) † 2,524 2.7E-3 100.00% 21.4 ✓
Simon block (EC) ✠ 4,322 4.2E-3 99.90% 35.5 ✓
SHA-1 2 blocks (EC) ✠ 87,240 53.3E-3 98.60% 690.1 ✗
AES block (EC) ✠ 32,302 211.3E-3 99.80% 261.2 ✗

6.2 Emulated µWM Evaluation

Table 2 reports the results of emulating all µWMs from our
benchmark with WeMu. These results demonstrate the effec-
tiveness, scalability, and generality of WeMu.

Unit Testing Framework. To facilitate WeMu’s evaluation,
we developed a comprehensive unit testing framework that
serves several purposes: (i) evaluation of WeMu’s correct-
ness; (ii) facilitate practical analysis workflows; and (iii) help
ensuring the reliability and backwards compatibility of any fu-
ture WeMu extensions. The framework features a robust ELF
loader that automatically detects and maps memory segments
from ELF binaries, plus an assembly loader for rapid test-
ing of smaller µWM implementations. A practical command-
line interface enables easy execution of individual tests, test
classes, or complete test suites over ranges of input combi-
nations, providing clear pass/fail output. Beyond evaluation,
this framework is valuable for rapid prototyping and analysis
of µWMs. Analysts can quickly set up and run tests using
high-level abstractions while retaining full control over low-

level execution parameters, including memory layout, register
initialization, and execution trace generation.

Effectiveness (RQ2). Table 2 presents WeMu’s emula-
tion correctness results. WeMu successfully emulates all
exception-based µWMs [43], including fundamental gates
(AND, OR, ASSIGN, NOT) and composite circuits (NAND, XOR,
MUX), producing the correct computational output across all
input combinations. Notably, WeMu emulates the exception-
based XOR gate correctly despite its poor hardware perfor-
mance. This discrepancy indicates that the XOR gate contains
no logical flaws but suffers from timing issues on our testbed,
which WeMu’s abstract models do not encounter.

For RSB-based µWMs from the Flexo framework [44],
WeMu correctly emulates all gates and most composite cir-
cuits, with the exception of the SHA-1 2-block and AES block
µWCs. SHA-1 2-block emulation fails consistently at round
67 out of 180 total rounds due to an undiagnosed single-bit
discrepancy that propagates through subsequent rounds. We
validated that WeMu correctly emulates round 67 in isolation
when provided with clean architectural and microarchitectural
state, but the failure occurs when executing as part of the full
iterative algorithm. The error stems from an incorrectly calcu-
lated µWR address offset, causing access to the wrong cache
line and leaving the intended line unaffected. We suspect that
microarchitectural state from previous rounds may interfere
with address calculations, though our attempts to clear cache
state and reset the transient scheduler between rounds have
not resolved the issue at the time of this writing. AES block
emulation fails during the initial key expansion round, pre-
venting execution of the full cipher. As the error occurs in the
initial round, we suspect an issue with the WeMu configura-
tion (e.g. wrongly mapped memory) rather than inter-round
interference. Further investigation is needed to identify the
specific cause.

Scalability (RQ3). WeMu successfully emulates complex
circuits including 32-bit adders and complete cryptographic
computations such as SHA-1 rounds, AES rounds, and Simon
cipher blocks. Among these implementations, Simon repre-
sents the largest complete cryptographic algorithm that WeMu
can correctly emulate in its entirety, encompassing 8288 regis-
ters and 4322 gates. More significantly, WeMu demonstrates
its scalability by correctly emulating up to 35,904 consecutive
gates when executing 2-block SHA-1 (up to round 66). This
consecutive execution capability showcases WeMu’s potential
for handling large and complex circuits.

Performance (RQ4). We evaluate WeMu’s performance
by measuring and comparing the runtime of µWMs under
both native hardware execution and WeMu emulation. Ta-
ble 2 presents our findings. On average, emulation is 15,043×
slower than native execution, with a maximum slowdown of

11



27,317× (exception-based XOR) and a minimum of 1,236×
(RSB-based AES block). As expected, WeMu executes mul-
tiple orders of magnitude slower than real hardware due to
emulation overhead – the host system must translate and in-
terpret each target operation in software rather than executing
it directly on hardware [19]. However, native-like speeds are
unnecessary for our purposes, as WeMu’s primary goal is
providing a controlled, analyzable environment for studying
µWM behavior rather than optimizing for attack deployment.

The crucial finding is that WeMu achieves acceptable exe-
cution speeds for practical analysis workflows. It emulates 2
blocks of SHA-1 (87,240 gates – our largest circuit) in 690.1
seconds or 11.50 minutes. A bit error occurs during round 67
after 4.91 minutes of successful emulation. For the Simon ci-
pher (4,322 gates – our largest successfully emulated circuit),
WeMu completes emulation in 35.46 seconds.

Beyond WeMu’s performance evaluation, our native ex-
ecution measurements reveal an interesting characteristic
of µWM behavior. We observe that AES block encryption
(32,302 gates) contains far fewer gates than SHA-1 2-blocks
(87,240 gates) yet requires nearly four times longer native exe-
cution time. This discrepancy stems from the error correction
mechanism triggering more retry attempts for AES rounds
compared to SHA-1 rounds. Since individual AES rounds are
substantially longer (up to 2,669 gates) than SHA-1 rounds
(maximum 553 gates), errors are statistically more likely to
occur within any given AES round, requiring more correction
attempts that inflate overall execution time. Notably, WeMu
avoids this issue entirely because its deterministic nature elim-
inates the need to emulate error correction mechanisms.

Generality. All experiments were executed using WeMu’s
default configuration values (as specified in Table 1), demon-
strating that WeMu requires no calibration even when emulat-
ing µWMs that are calibrated to specific microarchitectures.
This robustness and generality result from our design choice
of abstracting away low-level, microarchitecture-specific hard-
ware details through generic microarchitectural modeling.

6.3 Comparison with gem5 (RQ5)

gem5 [3] is a cycle-accurate computer system simulator
that provides detailed microarchitectural modeling, including
caching, speculative execution, and out-of-order execution.
Given these capabilities and prior work demonstrating gem5’s
ability to reproduce Spectre attacks [1], we evaluate gem5 as
an alternative platform for µWM analysis.

We evaluate both of gem5’s primary simulation modes
using its default configuration scripts: System-call Emula-
tion (SE) mode and Full System (FS) mode. SE mode pro-
vides faster simulation by directly emulating system calls
but omits certain system-level timing behaviors. FS mode of-
fers complete system emulation including operating systems

and more accurate system-level timing behavior but executes
significantly slower.

System-call Emulation Mode. SE mode presents funda-
mental limitations for µWM analysis. Most critically, it cur-
rently does not support signal handling,4 which is essential
for exception-based µWMs that rely on exception handlers to
continue execution after transient gate computation. Without
signal handling support, exception-based µWMs simply crash
when exceptions occur.

For RSB-based µWMs, we tested all gates from our eval-
uation and observed complete failure: all gates achieved ap-
proximately 0% accuracy with 100% error detection rates in
Flexo’s differential encoding scheme. This suggests funda-
mental issues with µWR state management during transient
execution or timed memory read operations.

Full System Mode. FS mode shows improved but still inad-
equate µWM emulation capabilities. We conducted evaluation
using the exception-based AND gate [43]. Despite extensive
parameter tuning across a wide range of configuration values,
the maximum achievable accuracy reached only 75%, with a
clear pattern where the (1,1) input combination consistently
failed while other combinations succeeded. This behavior in-
dicates that the µWM systematically outputs ‘0’, suggesting
problems with either variable caching mechanisms or cache
state interpretation during timed memory reads.

Performance Comparison. Beyond correctness issues,
gem5 exhibits significant performance limitations compared
to WeMu. An exception-based AND gate executes in 3.25
seconds in FS mode – over 177 times slower than WeMu’s
execution time of 0.0185 seconds.

Conclusion. These limitations validate our architectural de-
cision to build WeMu on Unicorn rather than extending gem5.
While gem5’s comprehensive microarchitectural modeling
could potentially enable more sophisticated analysis capa-
bilities with additional research and development, WeMu’s
purpose-built design delivers immediate functionality for
µWM analysis with acceptable performance.

7 Limitations and Future Work

While WeMu clearly demonstrates that accurate µWM emula-
tion is achievable through targeted abstract modeling, several
limitations in the current prototype present opportunities for
future improvement. This section outlines those limitations
and highlights promising directions for extending WeMu’s

4See the function description of ignoreFunc in the gem5 source code
(https://github.com/gem5/gem5/blob/stable/src/sim/syscall_
emul.hh) and GitHub issue https://github.com/gem5/gem5/issues/
1544, currently marked as “Not planned”.

12

https://github.com/gem5/gem5/blob/stable/src/sim/syscall_emul.hh
https://github.com/gem5/gem5/blob/stable/src/sim/syscall_emul.hh
https://github.com/gem5/gem5/issues/1544
https://github.com/gem5/gem5/issues/1544


capabilities. We envision WeMu as an open-source, extensible
base platform that may serve as a foundation for continued
research into µWM attacks and defenses.

Addressing Implementation Edge Cases. While WeMu
successfully emulates 22 of 24 tested µWMs, including sev-
eral thousands of gates, two remaining edge cases (SHA-1
2-block and AES block) remain unresolved as of this writ-
ing. Our analysis indicates that these failures stem from
implementation-specific issues rather than fundamental mod-
eling limitations, suggesting they could be addressed through
targeted debugging and enhanced state management.

Scope of Transient Primitives. WeMu’s current implemen-
tation focuses on exception-based and RSB-based transient
primitives, which represent the most practical and accurate
approaches demonstrated in existing research [43, 44]. Fu-
ture extensions to WeMu could incorporate support for BP-
and BTB-based transient primitives [43] (cf. Appendix A). In
present µWM designs, these primitives currently exhibit lim-
ited practical applicability because (i) they operate relatively
slow due to expensive mistraining procedures; and (ii) they
achieve relatively low accuracy as prediction mechanisms
gradually adapt to deliberate mistraining attempts. Never-
theless, future work may improve their execution time and
accuracy by applying advanced techniques such as Flexo’s
differential encoding.

Abstraction vs. Fidelity Trade-offs. WeMu deliberately
adopts a microarchitecture-agnostic approach that abstracts
away many platform-specific details in favor of simplified,
configurable models. This design choice provides a signifi-
cant advantage: the emulator does not require fine-tuning to
specific target microarchitectures.

However, this abstraction might limit WeMu when consid-
ering future research directions using µWMs for hardware-
software binding techniques [28]. Wang et al. [44] have pro-
posed developing microarchitecture-specific µWMs that delib-
erately target specific microarchitectures while failing on oth-
ers. Future work should investigate whether WeMu’s current
abstraction level sufficiently supports such microarchitecture-
specific µWMs, as they may require more detailed microar-
chitectural models. A full system emulator like gem5 could
potentially address these limitations, provided the processor
features targeted by the µWM are either non-proprietary or
have been sufficiently reverse engineered.

Reverse Engineering µWMs using WeMu. Reverse engi-
neering malware presents complex challenges, with analysts
facing multiple orthogonal obstacles (e.g., classical obfusca-
tion, packing, anti-debugging defenses). As acknowledged in
a recent survey [32], "there is no single tool that can cover all
aspects of malware behavior". WeMu addresses one specific

aspect of this de-obfuscation challenge by making microarchi-
tectural computations visible, though integration into realistic
malware analysis workflows remains an area for future explo-
ration.

Furthermore, while WeMu correctly captures the microar-
chitectural effects in execution traces, it remains challenging
for human analysts to detect the actual computations being
performed through these effects. Simple gates (AND, OR, NOT)
may be recognizable in load patterns, but analyzing complex
cryptographic algorithms spanning thousands of gates is prac-
tically infeasible – especially for Flexo µWMs, where data is
encoded differentially and computations are implemented in
minterm canonical form.

Future work could extend WeMu with automated analysis
to reconstruct computational logic from microarchitectural
traces. By varying inputs and observing resulting cache states
and dependency patterns, such analysis could infer individual
µWG functions and reconstruct the circuit, similar to black-
box deobfuscation approaches [29]. Ultimately, the goal is to
recover high-level algorithmic descriptions, similar to decom-
pilation of obfuscated binaries. For cryptographic µWMs, this
could entail identifying AES or SHA-1 from characteristic pat-
terns, or leveraging tools like Aligot [7] to map input-output
behavior to known functions.

Towards Precise Side-Channel Analysis. Static analysis
tools for Spectre and formal semantics for speculative execu-
tion often rely on conservative overapproximations to ensure
soundness [10]. While this approach is safe, it tends to in-
clude speculative paths that are infeasible in practice, leading
to false positives and reports of unexploitable vulnerabilities.
We believe that the abstractions developed in this work could
help refine these analyses by providing a more precise tran-
sient execution model that captures the interaction between
cache state and transient window length. Integrating such a
model into existing tools could reduce false alarms and focus
analysis on realistic, potentially exploitable vulnerabilities.

8 Conclusion

This work addresses the emerging threat posed by µWMs by
developing WeMu, the first analysis framework capable of ef-
fectively emulating µWMs, transforming their previously hid-
den computations into observable, debuggable environments.
We demonstrate that targeted abstract modeling of microar-
chitectural effects enables correct µWM emulation without
requiring extensive hardware reverse engineering, challeng-
ing prior assertions about the difficulty of µWM emulation.
Our comprehensive evaluation shows that WeMu success-
fully emulates µWMs ranging from simple gates to complex
cryptographic circuits, providing the foundation for defensive
research against microarchitectural obfuscation techniques.

13



Acknowledgements

This research was partially funded by the Research Fund
KU Leuven, the Research Foundation – Flanders (FWO) via
grant #12B2A24N, and the Cybersecurity Research Program
Flanders.

References

[1] P. Ayoub and C. Maurice. Reproducing Spectre Attack
with gem5: How To Do It Right? In EuroSys Workshop,
2021.

[2] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In USENIX ATC, 2005.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2), 2011.

[4] S. Bratus. What hacker research taught me.
https://www.cs.dartmouth.edu/~sergey/hc/
rss-hacker-research.pdf. Presented at RSS, 2009.

[5] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kan-
demir. Casym: Cache aware symbolic execution for
side channel detection and mitigation. In S&P, 2019.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In USENIX OSDI, 2008.

[7] J. Calvet, J. M. Fernandez, and J.-Y. Marion. Aligot:
Cryptographic function identification in obfuscated bi-
nary programs. In CCS, 2012.

[8] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp,
B. Von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss. A systematic evaluation of transient execution
attacks and defenses. In USENIX Security, 2019.

[9] S. Cauligi, C. Disselkoen, K. von Gleissenthall,
D. Tullsen, D. Stefan, T. Rezk, and G. Barthe. Constant-
time foundations for the new spectre era. In PLDI, 2020.

[10] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and
D. Stefan. Sok: Practical foundations for software spec-
tre defenses. In S&P, 2022.

[11] L.-A. Daniel, S. Bardin, and T. Rezk. Hunting the
Haunter — Efficient Relational Symbolic Execution for
Spectre with Haunted RelSE. In NDSS, 2021.

[12] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke.
Cacheaudit: A tool for the static analysis of cache side
channels. TISSEC, 2015.

[13] T. Dullien. Weird Machines, Exploitability, and Prov-
able Unexploitability. IEEE TETC, 8(2), 2020.

[14] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel,
A. Sapello, and A. Ghosh. Computing with time: Mi-
croarchitectural weird machines. In ASPLOS, 2021.

[15] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of
microarchitectural timing attacks and countermeasures
on contemporary hardware. J Cryptogr Eng, 8(1), 2018.

[16] A. Geimer, M. Vergnolle, F. Recoules, L.-A. Daniel,
S. Bardin, and C. Maurice. A systematic evaluation of
automated tools for side-channel vulnerabilities detec-
tion in cryptographic libraries. In CCS, 2023.

[17] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and
A. Sánchez. Spectector: Principled Detection of Specu-
lative Information Flows. In IEEE S&P, 2020.

[18] F. Guo, P. Ferrie, and T.-c. Chiueh. A Study of the
Packer Problem and Its Solutions. In RAID, 2008.

[19] Y. Hu, H. Jin, Z. Yu, and H. Zheng. An Optimization
Approach for QEMU. In ICISE, 2009.

[20] J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt,
P. Schwabe, G. Barthe, P.-A. Fouque, and Y. Acar.
"They’re not that hard to mitigate": What cryptographic
library developers think about timing attacks. In IEEE
S&P, 2022.

[21] D. A. Kaplan. Optimization and Amplification of Cache
Side Channel Signals. arXiv preprint arXiv:2303.00122,
2023.

[22] D. Katzman, W. Kosasih, C. Chuengsatiansup, E. Ronen,
and Y. Yarom. The gates of time: Improving cache
attacks with transient execution. In USENIX Security,
2023.

[23] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7), 1976.

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE S&P, 2019.

[25] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B.
Abu-Ghazaleh. Spectre returns! Speculation attacks
using the return stack buffer. In WOOT.

[26] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown: Reading kernel memory from
user space. In USENIX Security, 2018.

14

https://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf
https://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf


[27] G. Maisuradze and C. Rossow. ret2spec: Speculative
execution using return stack buffers. In CCS, 2018.

[28] R. Mechelinck, D. Dorfmeister, B. Fischer, S. Volckaert,
and S. Brunthaler. GlueZilla: Efficient and Scalable
Software to Hardware Binding using Rowhammer. In
DIMVA, 2024.

[29] G. Menguy, S. Bardin, R. Bonichon, and C. d. S. Lima.
Search-based local black-box deobfuscation: under-
stand, improve and mitigate. In CCS, 2021.

[30] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer.
SpecFuzz: Bringing spectre-type vulnerabilities to the
surface. In 29th USENIX Security Symposium (USENIX
Security 20), 2020.

[31] O. Oleksenko, C. Fetzer, B. Köpf, and M. Silberstein.
Revizor: Testing black-box CPUs against speculation
contracts. In ASPLOS, 2022.

[32] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach. Dy-
namic malware analysis in the modern era—a state of
the art survey. ACM Computing Surveys (CSUR), 2019.

[33] N. A. Quynh and D. H. Vu. Unicorn: Next Generation
CPU Emulator Framework. BlackHat USA, 476, 2015.

[34] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In CCS,
2019.

[35] R. Shapiro, S. Bratus, and S. W. Smith. “Weird Ma-
chines” in ELF: A Spotlight on the Underappreciated
Metadata. In WOOT, 2013.

[36] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Krügel, and G. Vigna. SOK: (state of) the art of war:
Offensive techniques in binary analysis. In IEEE S&P,
2016.

[37] J. Szefer. Survey of Microarchitectural Side and Covert
Channels, Attacks, and Defenses. J Hardw Syst Secur,
3(3), 2019.

[38] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In USENIX Security, 2018.

[39] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
Ridl: Rogue in-flight data load. In IEEE S&P, 2019.

[40] J. Wampler, I. Martiny, and E. Wustrow. ExSpectre:
Hiding Malware in Speculative Execution. In NDSS,
2019.

[41] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury. Oo7: Low-overhead defense against
spectre attacks via program analysis. IEEE TSE, 47(11),
2019.

[42] G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and
A. Roychoudhury. KLEESpectre: Detecting Informa-
tion Leakage through Speculative Cache Attacks via
Symbolic Execution. TOSEM, 29(3), 2020.

[43] P.-L. Wang, F. Brown, and R. S. Wahby. The ghost is
the machine: Weird machines in transient execution. In
IEEE S&P Workshops, 2023.

[44] P.-L. Wang, R. Paccagnella, R. S. Wahby, and F. Brown.
Bending microarchitectural weird machines towards
practicality. In USENIX Security, 2024.

A Additional Transient Primitives

Branch Predictor. The BP monitors recent conditional
branch outcomes to predict future branch directions. It can
be used as a transient primitive through systematic mistrain-
ing: repeatedly executing a branch with consistent outcomes
(e.g., always taken) during training, then manipulating the
condition to produce the opposite result. The BP mispredicts
based on training, causing transient execution of the wrong
path until the correct direction is resolved [8, 43].

Branch Target Buffer. The BTB records mappings between
branch instruction addresses and their targets for both direct
and indirect branches. It can be used as a transient primitive
through target address mistraining: during training, the BTB
learns to associate an instruction address with a specific target,
then when the actual target changes, continues predicting
the trained destination. This causes transient execution at
the wrong address until the processor resolves the correct
target [8, 43].

Intel TSX. Intel’s TSX provides hardware transactional
memory through atomic transaction blocks. Intel TSX can
be used as a transient primitive by triggering exceptions dur-
ing the transaction. Exceptions cause the transaction to be
aborted, but the instructions following the exception will ex-
ecute transiently. Furthermore, the abort only rolls back the
architectural effects of the transient instructions [14, 34].

B Calibrating Existing µWMs

When validating existing µWMs designs, they have to be cali-
brated to the target microarchitecture to ensure high accuracy.

15



B.1 Exception-based µWMs
Configuration Parameters. In the code artifact of Wang et
al.’s exception-based µWMs5 [43], we recognize the follow-
ing two parameters:

• Delay: After every µWG, delay loops are inserted to
ensure completion of asynchronous operations that were
initiated during the transient window. They ensure that
the loads or stores causing the output µWR to be cached
are completed, before follow-up gates or timed memory
reads use the register. The delay parameter controls the
duration of these waiting loops.6

• Threshold: When performing timed memory reads
to determine register values, this parameter differenti-
ates between cache hits (access time ≤ threshold) and
cache misses (access time > threshold).

To systematically evaluate the impact of these parameters,
we perform a grid search across different combinations of
threshold and delay values. For each parameter combi-
nation we execute all µWMs 1 million times, maintaining
consistency with the original evaluation methodology [43].

Discussion of Parameter Sensitivity. Figure 4a presents
the grid search results for the ASSIGN gate, clearly revealing
an operational region where the gate operates reliably. This re-
gion requires the delay to exceed 128 cycles and the threshold
to fall between 50 and 300 cycles.

The sensitivity to these parameters stems from cache op-
eration timing characteristics. Insufficient delay (below 128
cycles) prevents the transient load operation from completing
its caching effect. During the subsequent timed read to de-
termine output value, the data is still in transit from DRAM,
causing ‘1’s to be misinterpreted as ‘0’s. Since ‘0’s are cor-
rectly identified (remaining uncached), this timing error yields
approximately 50% accuracy with uniform input distribution.

Threshold parameters exhibit similar behavior. Low thresh-
olds (below 50 cycles) misclassify cache hits as misses, again
causing ‘1’s to be read as ‘0’s while ‘0’s remain correct, re-
sulting in 50% accuracy. Conversely, high thresholds (above
300 cycles) misclassify cache misses as hits, causing ‘0’s to
be misread as ‘1’s while ‘1’s stay correct, again yielding 50%
accuracy.

Figure 4b demonstrates the grid search results for the OR
gate, which exhibits similar parameter sensitivity but with
different accuracy results due to its dual-input design. When
delay or threshold values are too low, ‘1’s are misinterpreted
as ‘0’s, causing the input cases (0, 1), (1, 0), and (1, 1) to
produce incorrect outputs, resulting in approximately 25%

5https://github.com/joeywang4/Transient-Weird-Machine
6DELAY was not present as a configurable parameter in the original code

artifact, but was instead hardcoded throughout the implementation. We modi-
fied it to be configurable to facilitate parameter tuning on our testbed.

32 48 64 96 12
8

19
2

25
6

51
2

10
24

20
48

40
96

Delay Parameter

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

Th
re

sh
ol

d 
Pa

ra
m

et
er

50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

50.0 50.0 50.1 50.3 100.0 99.5 99.9 99.9 99.9 99.9 99.9

50.0 50.0 50.0 57.5 100.0 100.0 99.9 99.9 99.9 99.9 99.9

50.0 50.0 50.1 50.2 100.0 100.0 99.9 99.9 99.9 99.2 99.9

50.0 50.0 50.1 62.3 100.0 100.0 99.9 99.9 99.9 99.9 99.9

50.0 50.0 50.0 60.2 100.0 100.0 99.9 100.0 99.9 99.9 99.9

50.0 50.0 50.0 63.4 100.0 100.0 100.0 99.9 99.9 99.9 99.9

50.0 50.0 50.0 56.1 100.0 100.0 100.0 99.9 99.9 99.9 99.1

50.0 50.0 50.2 61.9 100.0 100.0 99.9 100.0 99.9 99.9 99.7

50.0 50.0 50.0 52.2 100.0 99.9 100.0 100.0 99.9 99.9 99.9

50.0 33.6 37.1 46.5 100.0 100.0 100.0 100.0 99.9 99.9 99.9

17.9 33.5 50.3 62.3 100.0 100.0 100.0 100.0 99.9 99.9 99.9

18.2 15.8 17.4 50.5 100.0 75.0 72.7 71.7 99.9 82.5 99.6

15.3 17.4 20.4 29.7 55.3 57.7 97.5 57.9 56.6 59.4 56.4

42.4 30.4 45.2 42.4 50.0 50.1 53.6 55.0 50.4 50.0 50.0

29.2 42.5 43.6 43.3 50.0 50.6 50.3 51.3 50.0 50.3 50.0

0

20

40

60

80

100

Accuracy (%
)

(a) Exception-based ASSIGN gate

32 48 64 96 12
8

19
2

25
6

51
2

10
24

20
48

40
96

Delay Parameter

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

Th
re

sh
ol

d 
Pa

ra
m

et
er

25.0 25.0 25.0 25.1 25.2 25.2 25.2 25.2 25.2 25.2 25.2

25.0 25.0 39.1 47.6 100.0 99.9 99.7 99.7 99.9 99.7 99.9

25.0 25.0 39.3 48.6 100.0 99.9 99.7 99.6 99.7 99.8 99.9

25.0 25.0 25.3 48.7 100.0 99.9 99.7 99.9 99.7 99.7 99.8

25.0 25.0 40.4 49.0 100.0 99.9 99.9 99.9 99.9 99.8 99.8

25.0 25.0 26.8 49.0 100.0 99.9 99.9 99.9 99.6 99.7 99.7

25.0 25.3 26.8 48.3 100.0 100.0 99.9 99.8 99.6 99.9 99.7

25.0 25.0 34.3 47.9 100.0 100.0 99.6 99.9 99.7 99.1 99.5

25.0 25.0 25.5 48.5 100.0 99.9 99.9 99.8 99.3 99.7 99.7

25.0 25.0 25.1 48.3 100.0 100.0 99.7 99.9 99.2 99.6 99.8

25.0 25.0 58.5 48.3 100.0 99.8 99.2 99.9 99.8 99.8 99.4

41.9 47.0 58.1 66.9 100.0 100.0 99.9 99.9 99.7 99.8 99.5

43.0 43.4 67.0 67.9 100.0 100.0 90.5 90.5 99.2 99.8 99.8

45.9 50.1 54.6 63.3 100.0 100.0 98.4 99.2 99.9 99.7 99.4

65.5 74.3 74.6 77.2 78.2 79.0 78.5 98.0 86.2 78.6 78.4

70.5 68.6 74.4 79.5 77.8 77.9 77.6 77.9 78.2 78.0 78.3

0

20

40

60

80

100

Accuracy (%
)

(b) Exception-based OR gate

Figure 4: Heatmaps of exception-based gates, illustrating ac-
curacy across various values of threshold and delay.

overall accuracy. Conversely, when the threshold is too high,
‘0’s are misread as ‘1’s, affecting only the (0, 0) input case
and yielding 75% accuracy.

B.2 RSB-based µWMs

For RSB-based µWMs [44], we follow the recommended
parameter optimization methodology from the original code
artifact7 and tune two critical parameters:

• RET_WM_DIV_ROUNDS: When triggering transient
execution, Flexo-compiled µWMs implement a chain
of dependent division operations to calculate the actual
return address. This parameter controls the number of
division instructions – more divisions extend the time re-
quired for return address calculation, thereby increasing
the transient window.

• WR_OFFSET: Controls memory spacing between con-
secutive weird registers. Appropriate spacing prevents
prefetcher interference and cache line conflicts that

7https://github.com/joeywang4/Flexo

16

https://github.com/joeywang4/Transient-Weird-Machine
https://github.com/joeywang4/Flexo


would otherwise corrupt register values, as detailed in
Section 3.3 of the original paper [44].

We conduct a grid search across parameter combinations
to determine optimal configurations for µWGs, following
the exception-based calibration methodology. For µWCs,
we utilize the existing reproduction framework from the
code artifact, which performs a linear search limited to the
RET_WM_DIV_ROUNDS parameter. This linear search reduces
search space, trading potential accuracy for significantly faster
calibration times.

17


	Introduction
	Background
	Microarchitectural Weird Machines
	Problem Statement
	muwm Adversary Applications
	muwm Analysis Challenges
	Goals

	WeMu's Modeling of the Microarchitecture
	Single-Level Infinite Cache Model
	Transient Execution Support
	Cache-Aware Transient Scheduling
	Time-Stamp Counter Support
	WeMu's Analysis Capabilities

	Evaluation
	Native muwm Reproduction (RQ1)
	Emulated muwm Evaluation
	Comparison with gem5 (RQ5)

	Limitations and Future Work
	Conclusion
	Additional Transient Primitives
	Calibrating Existing muwm
	Exception-based muwm
	RSB-based muwm


