
Compiler Support for Control-Flow Linearization
Using Architectural Mimicry

Daan Vanoverloop
DistriNet
KU Leuven

daan.vanoverloop@kuleuven.be

Hans Winderix
DistriNet
KU Leuven

hans.winderix@kuleuven.be

Lesly-Ann Daniel
DistriNet
KU Leuven

lesly-ann.daniel@kuleuven.be

Frank Piessens
DistriNet
KU Leuven

frank.piessens@kuleuven.be

Abstract
Architectural Mimicry (AMi) is a novel ISA extension provid-
ing hardware support for hardening against software-based
microachitectural attacks where secret branch conditions
are leaked through control-flow. This work extends AMi pro-
gramming models to support more control-flow linearization
patterns, and implements compiler support in LLVM.

1 Introduction
Modern hardware heavily relies on optimizations to improve
performance. Unfortunately, these optimizations often come
at the expense of security. Hardware-software co-design is a
promising solution to mitigate these attacks at an acceptable
cost. However, research on hardware software co-design is
challenging as it requires both hardware changes and (low-
level) software support. Moreover, these defenses often come
with new programming models that are not always trivial to
enforce. It is therefore common for such hardware software
co-designs to be evaluated on small, manually-written (as-
sembly) programs [5, 12–14] and to rely on ad-hoc manual
security verification. The lack of compiler support to trans-
parently ensure compliance with the programming models
required by hardware defenses is therefore a main hurdle to
a realistic evaluation of these defenses and to their adoption
for provable end-to-end security.
In this work, we seek to lift this hurdle for a recently

proposed hardware-software co-design called Architectural
Mimicry (AMi) [12], which provides support for efficient
control-flow linearization and balancing. The core idea of
AMi is a hardware feature calledmimic execution that mimics
the microarchitectural behavior of instructions: it executes
instructions for their microarchitectural effects without com-
mitting their result to the architecture. AMi comes with 1) an
ISA extension to control mimic execution in software and 2)
programming models showing how to balance and linearize
secret-dependent control flow.

Unfortunately, toolchain support for AMi is limited to an
assembler; it does not include automatic control-flow balanc-
ing and linearization. Furthermore, the proposed program-
ming models are only applicable to a subset of control-flow
patterns that are encountered during compilation.

PriSC, January 20, 2024, London, United Kingdom
2024.

Concretely, in this work, we:
• Generalize the AMi programming models to support
linearization of reducible control flow;

• Add compiler support for AMi to LLVM [7], a widely
used compiler infrastructure;

• Evaluate the security and performance of our compiler
on Proteus [2], a RISC-V core with an implementation
of AMi provided by Winderix et al. [12];

2 Architectural Mimicry (AMi)
On the hardware side, AMi relies on a primitive,mimic execu-
tion, which imitates instructions in terms of their timing and
microarchitectural behavior and a processor mode mimicry
mode, in which the processor mimics the execution of in-
structions. On the software side, to control mimic execution,
AMi extends the ISA with qualifiers (s, m, a, g, p) prefixing
base instructions, which we illustrate belowwith an example.
Notably, AMi provides ISA support to linearize a branch:

beqz c, label; [B]; label: [...] ,
by prefixing the branch instruction with the activating qual-
ifier : a.beqz. An activating branch always falls through, but
if c = 0, mimicry mode is enabled until label is reached, ef-
fectively mimicking the execution of the branch B instead of
jumping over it.
Even if the core idea is simple, it is non-trivial to make

sure that this linearization transformation is both secure and
correct. Informally, the linearization pattern above is secure if
(1) B does not leak secrets itself, and (2) B produces the same
observations in mimicry mode and standard mode so that an
attacker cannot infer whether c = 0. The pattern is correct if
B has no effect on the live state when executed in mimicry
mode: only then mimicking B is the same as jumping over B.
We illustrate how to securely and correctly linearize the

branch in Listing 1a, resulting in Listing 1b. First, the branch
instruction is turned into an activating branch, which always
falls through but enables mimicry mode until the then-label
is reached if the branch should have been taken. In mimicry
mode, instructions prefixed by the standard qualifier s are
mimicked: for instance, v is not modified at line 3.

For security, it is important to make sure that observations
produced by the linearized branch do not depend on the
processor mode. Hence, because the store instructions at
line 6 leaks its address, the value of a should be independent
of the processormode. Hence, the computation of the address



PriSC, January 20, 2024, London, United Kingdom D. Vanoverloop, H. Winderix, L.-A. Daniel, and F. Piessens

1 beqz c, then
2 // c != 0
3 mul v, 2
4 add a, 4
5
6 store v, a
7 then: [...]

(a) Vulnerable code

a.beqz c, then // obs = {beqz}
// enter mimicry mode if c = 0

s.mul v, 2 // obs = {mul}
p.add a, 4 // obs = {add}
g.load v, a // obs = {load a}
p.store v, a // obs = {store a}

then: [...] // a is not live

(b) AMi linearization, and leakage (obs).

Listing 1. Linearizing a secret-dependent branch with AMi.

at line 4 should be committed even if the processor is in
mimicry mode. This can be achieved by prefixing the add at
line 4 with the persistent qualifier p. Note that to be correct,
this transformation requires that a is not live at line 7.

Finally, not all instructions can be mimicked. For instance
mimicking store instructions would require support from
the memory subsystem. Hence, store instructions are always
persistent and, to preserve correctness, it is therefore im-
portant to make sure that their effect can be nullified when
executed in mimicry mode. To do so, AMi provides the ghost
qualifier g which, conversely to the standard qualifier, com-
mits the result of an instruction to the architectural state
only in mimicry mode and mimics it otherwise. The load at
line 5 therefore nullifies the effect of the following store only
in mimicry mode.

This small example illustrates how generating correct and
secure linearizations can be non-trivial, and hence compiler
support would be useful.

3 Compiler support for AMi
However, modifying a compiler to ensure security and cor-
rectness of generated code is not trivial. To enforce security,
the compiler must be aware of secrets and leakage model of
the target architecture (cf. Section 3.1). To preserve correct-
ness, the compiler must be aware of the semantics of AMi
and how mimic/persistent instructions affect the live state
(cf. Sections 3.2 and 3.3).

3.1 Static taint tracking
In order to precisely identify secret-dependent control flow,
we implemented static taint tracking in the RISC-V backend.
First, we gradually lower source-level security annotations
on function arguments and global variables across the dif-
ferent LLVM abstraction layers resulting in a set of tainted
input registers for each function in the backend. We then
identify secret-dependent branches by performing a forward
dataflow analysis, following Kildall’s method, using the usual
high/low security domain.

3.2 Partial control flow linearization
To efficiently linearize reducible control flow, we adapt a
method called Partial Control Flow Linearization (PCFL), first

introduced by Moll and Hack [9], and recently applied in the
context of side-channel hardening [11]. Instead of remov-
ing a branch and rewriting the instructions in the branch
shadow using some expensive form of conditional execution
(e.g., [4, 10]), as done by the original PCFL algorithm, our
approach simply replaces the branch instruction by an ac-
tivating branch, and only inserts instructions in the branch
shadow that are necessary to preserve correctness and secu-
rity (making the linearization optimal). To preserve correct-
ness, we insert ghost loads to nullify the side-effects of stores
during mimic execution. Furthermore, to enforce security
we ensure that all addresses of memory operations within
the branch shadow are computed persistently.

3.3 Implementation
To increase security guarantees, hardening must be applied
as late as possible in the compiler pipeline. However, since
the linearized form uses more registers, our transformation
cannot be easily applied after register allocation. As a result,
some of the hardening starts before register allocation.
Unfortunately, the liveness constraints of AMi instruc-

tions are difficult to express within existing compiler infras-
tructure. For instance, two standard instructions belonging
to two different sides of an activating branch can write to
the same physical register, as they are not live at the same
time. However, this does not hold for ghost and persistent
instructions: executing them could overwrite results of an
instruction in the other side of the branch. The lack of sup-
port to express such liveness constraints in LLVM makes it
infeasible to apply register allocation on an AMi linearized
control-flow graph. To address this challenge, we carefully
constrain the register allocation by adding additional live-
ness constraints for ghost and persistent instruction.

4 Limitations and Future Work
In contrast to existing research [3, 11], our implementation
does not provide data-flow linearization, and we do not sup-
port loops with a secret-dependent trip count.
Currently, our compiler support only supports lineariza-

tion of secret dependent control-flow with AMi. In the fu-
ture, we plan to extend our compiler to additionally support
control-flow balancing using AMi. It would also be interest-
ing to parameterize our compiler with a leakage contract [6],
specifying what instructions can leak, in order to balance
or linearize secret-dependent control-flow more efficiently
and securely. More generally, we hope that our static taint-
tracking in LLVM can be leveraged to provide compiler sup-
port for other hardware-software security co-designs [5, 14].
Finally, another interesting area for future work would be to
add support for AMi in secure compilers like CompCert [8]
or Jasmin [1] to achieve provable end-to-end security.



Compiler Support for Linearization Using AMi PriSC, January 20, 2024, London, United Kingdom

Acknowledgments
This research is partially funded by grants of the Research
Foundation – Flanders (FWO), grant number 12B2A24N, by
the CyberSecurity Initiative Flanders, and by the ORSHIN
project, Horizon Europe grant agreement number 101070008.

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. [n. d.]. Jasmin: High-
Assurance and High-Speed Cryptography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(2017-10-30) (CCS ’17). Association for Computing Machinery, 1807–
1823. https://doi.org/10.1145/3133956.3134078

[2] Marton Bognar, Job Noorman, and Frank Piessens. [n. d.]. Proteus:
An extensible RISC-V core for hardware extensions. In RISC-V summit
europe ’23 (2023-06).

[3] Pietro Borrello, Daniele ConoD’Elia, LeonardoQuerzoni, and Cristiano
Giuffrida. [n. d.]. Constantine: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security (2021-11-12). ACM, 715–733. https://doi.org/10.1145/3460120.
3484583

[4] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn
De Sutter. 2009. Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors. In S&P.

[5] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin,
Tamara Rezk, and Frank Piessens. [n. d.]. {ProSpeCT}: Provably Secure
Speculation for the {Constant-Time } Policy. 7161–7178. https://www.
usenix.org/conference/usenixsecurity23/presentation/daniel

[6] Marco Guarnieri and Marco Patrignani. [n. d.]. Contract-Aware Secure
Compilation. abs/2012.14205 ([n. d.]). https://doi.org/10.48550/arXiv.
2012.14205 arXiv:2012.14205 [cs]

[7] C. Lattner and V. Adve. [n. d.]. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. (2004).
IEEE, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[8] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. 2016. CompCert – A For-
mally Verified Optimizing Compiler. In ERTS 2016: Embedded Real
Time Software and Systems. SEE. http://xavierleroy.org/publi/erts2016_
compcert.pdf

[9] Simon Moll and Sebastian Hack. [n. d.]. Partial control-flow lin-
earization. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2018-06-11). ACM,
543–556. https://doi.org/10.1145/3192366.3192413

[10] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.
2005. The Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks. In ICISC.

[11] Luigi Soares, Michael Canesche, and Fernando Magno Quintão Pereira.
[n. d.]. Side-channel Elimination via Partial Control-flow Linearization.
45, 2 ([n. d.]), 13:1–13:43. https://doi.org/10.1145/3594736

[12] Hans Winderix, Marton Bognar, Job Noorman, Lesly-Ann Daniel, and
Frank Piessens. 2024. Architectural Mimicry: Innovative Instructions
to Efficiently Address Control-Flow Leakage in Data-Oblivious Pro-
grams. In IEEE Symposium on Security and Privacy (SP).

[13] Hans Winderix, Jan Tobias Mühlberg, and Frank Piessens. [n. d.].
Compiler-Assisted Hardening of Embedded Software Against Interrupt
Latency Side-Channel Attacks. In 2021 IEEE European Symposium
on Security and Privacy (EuroS &P) (2021-09). IEEE, 667–682. https:
//doi.org/10.1109/EuroSP51992.2021.00050

[14] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W.
Fletcher. [n. d.]. Data Oblivious ISA Extensions for Side Channel-
Resistant and High Performance Computing. In Proceedings 2019 Net-
work and Distributed System Security Symposium (2019). Internet Soci-
ety. https://doi.org/10.14722/ndss.2019.23061

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://doi.org/10.48550/arXiv.2012.14205
https://doi.org/10.48550/arXiv.2012.14205
http://arxiv.org/abs/2012.14205 [cs]
https://doi.org/10.1109/CGO.2004.1281665
http://xavierleroy.org/publi/erts2016_compcert.pdf
http://xavierleroy.org/publi/erts2016_compcert.pdf
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3594736
https://doi.org/10.1109/EuroSP51992.2021.00050
https://doi.org/10.1109/EuroSP51992.2021.00050
https://doi.org/10.14722/ndss.2019.23061

	Abstract
	1 Introduction
	2 Architectural Mimicry (AMi)
	3 Compiler support for AMi
	3.1 Static taint tracking
	3.2 Partial control flow linearization
	3.3 Implementation

	4 Limitations and Future Work
	Acknowledgments
	References

