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Abstract—Novel big data workloads like genomics or manage-
ment of large databases are rising and have yet to be treated
efficiently. The gap between processing and memory access has
not been filled and processing power is currently increasing
only because of parallelization. A shift from computing-centric
to data-centric architectures is thus required and the concept
of processing in-memory is a promising way of doing it. This
paper evaluates this concept with the commonly used k-means
algorithm. The platform used to implement it is the UPMEM
architecture which is a DRAM with embedded computing capa-
bilities. Through experiments, we show that the architecture’s low
computation power induces limitations for applications without
a big memory bottleneck.

I. INTRODUCTION

Over the last decades, the growth of the Internet and
the creation of databases by various organizations have led
to large volumes of information that need to be analyzed.
Consequently, improving data-intensive applications became
a main concern. The performances are not limited by the
computational speed but rather by the memory access. Tra-
ditional architectures are vulnerable to memory bandwidth
and latency issues. This slows down the computations by
preventing processors from running at full speed. This is
referred as the memory wall. Since increasing drastically
the bandwidth does not seem to be easily achievable, trying
to reduce the communications between the processors and
the memory might be easier. The hardware solutions to this
problem generally involve ‘cache’ memory which consists in
bringing faster memories closer to the processor.

Another kind of solutions is near-data processing which
consists in doing the opposite: bringing processing units close
to the memory, or to the pathway used during data movement.
The architecture which we are particularly interested in is the
processing in memory (PIM) which integrates processing units
into the main memory.

UPMEM [1] is a project aiming to produce a PIM archi-
tecture. This technology adds co-processing units into the
DRAM that can execute operations on behalf of the CPU,
while minimizing the data flow. A 16GBytes UPMEM-DIMM
embeds 256 DRAM Processing Units (named DPU) and up
to 16 of them can be added to a standard CPU. This model
offers a massively parallel environment while reducing the
latency, and increasing the bandwidth which makes it ideal
for data-consuming operations. However, the application has
to be adjusted to take advantage of this architecture.

This technology therefore seems to be a good solution to
run data intensive tasks like clustering. Cluster analysis is used
in a consequent number of applications, such as image seg-
mentation, social network analysis, medical imaging, or gene
sequence analysis. In particular, k-means clustering problem
is well-known. The goal is to partition a set of points into &k
clusters while minimizing the sum of distances from each data
point to the centroid of its cluster. Stuart Lloyd’s algorithm [2]
became popular because of its efficiency and is still widely
used. The centroids are initialized randomly and each point
gets the class of its nearest centroid. We then update the
centroids and repeat the operation until a convergence criteria
is met. This algorithm has a polynomial complexity, and it
can return a local optimum, depending on the initialization of
the first centroids. Finding an optimal solution is however NP-
hard [3]. k-means++ algorithm [4] uses a randomized seeding
technique to improve both runtime and clustering quality. This
clustering problem introduces many distance computations,
and those can be effectively parallelized.

This paper proposes an implementation of the k-means
algorithm on the UPMEM PIM architecture.

The rest of this paper is organized as follows. Section
IT gives an overview of PIM architectures and of k-means
enhanced algorithms. The architecture of UPMEM is developed
in Section III. In Section IV, we describe our implementation
of the k-means algorithm for the UPMEM architecture. We then
evaluate it experimentally in Section V, and finally conclude
in Section VI

II. RELATED WORK

II-A will first do a quick summary of what has been done on
the topic of PIM. This will allow us to visualize the place of
UPMEM in the ecosystem. Then II-B will go through previous
work done on the k-means.

A. Processing In Memory

The concept of near-data processing (NDP) has been
around since the 1960s [5]. Through the years, there has been
more or less interest in it, following traditional computer ar-
chitecture scaling and problems necessities. As we know with
recent big-data challenges, we are facing walls of memory,
bandwidth and power. A shift from compute-centric to data-
centric computing systems is thus needed and the field of NDP,
and particularly PIM, is blooming [6].



PIM is only a subset of NDP which can also include
processing during transport (e.g. intelligent network, in front
of bus/switch, ...), reconfigurable architectures [7], [8], pro-
cessing in cache or on disk, ... Systems with such capabilities
would allow the replacement of DRAM with non-volatile
memory which offers more storage at a lesser cost and a lower
power consumption. On a side note, NDP projects are often
called PIM even though it is not really.

PIM is being focused on because it is the most radical archi-
tecture to tackle data processing problems. PIM allows mas-
sive bandwidth and low latency. Combined with specialized
processing units it really speeds up the computing process.
Reducing data motion also means less power consumption
and leaving off-chip communication for other applications,
resulting in a more efficient system.

2D-integrated PIM has been the first explored path. Em-
bedding logic and memory onto the same die is functionally
feasible, enabling very wide bus interfaces. This can be
transparently used as regular DRAM and can be attached to
external memory. One drawback is the unavoidable choice
to make between high and efficient memory storage and fast
logic.

Since the late 1990s, 3D integration of logic and memory
layers has emerged. In addition to even greater bandwidth and
lower latency due to on-bus bus frequencies being higher, the
width of the bus is flexible. Freeing from pin constraints also
means more pins available for more important work or push a
little back the power wall as it is constrained by the important
growth of supply pins compared to the total pins development.
Memory management is also faster and more efficient due to
the logic layer.

Shifting from the long established computing-centric archi-
tecture comes with big usability challenges. These problems
evolve around the fact that there is no consortium on what
a PIM architecture should be or what language/interactions
it should have, and the dependency on vendors. Easy PIM
programmability is key for wide adaptation, depending on the
memory-view and usage. For 2D PIM, it depends only on the
memory vendor which is not used to this kind of problems.
This is not true for 3D PIM because of the separation of
the layers but the flexible inter-layers bus makes it harder to
program. While the possible transparency of 2D PIM allows a
smooth architectural transition, a business case is required for
vendors to commit in this area. Another commercial limitation
is the absence of upgradeability because of the tight integration
of memory and processing.

B. KMeans

We distinguish two main lines of research to improve the
performances of the k-means clustering algorithm. The first
focuses on the standard algorithm, and consists mostly in
avoiding useless computations. These improvements can be
included in both sequential and parallel implementations. The
second line uses parallelism to obtain significant speed up.

1) KMeans Standard Algorithm Enhancements: [9] pro-
poses an amelioration of the k-means algorithm using a data

structure called a kd-tree (k dimensional tree). Each node of
such a tree stores information on points contained in a hyper-
rectangle. The root of the kd-tree is the rectangle containing all
the points of the figure. Each rectangle is then recursively split
in two ‘balanced’ rectangles. Generally, the rectangles are split
along their longest side, so that the two resulting rectangles
have the same number of points, but other splitting patterns
are possible. In some cases, it can be easily known that a
centroid is not the nearest class for every point of a node. This
can then be used to avoid unnecessary computations. Despite
the overhead introduced when building the data-structure, the
algorithm shows significant speed-up, both on generated and
real datasets.

In [10], the authors propose an enhanced k-means algo-
rithm which improves the execution time. For each point,
the distance to the current nearest cluster is kept in memory.
At the next iteration, they first compute the distance to the
new centroid of the same cluster. If is is less or equal to
the distance kept in memory, then the point will not change
cluster. It is thus not needed to compute the distance to the
k — 1 other clusters. This algorithm based on the simple
idea of benefitting from previous iterations avoids useless
computations. Experimental results with several datasets show
it is up to three times faster than the standard algorithm.

The authors of [11] propose an optimized k-means algo-
rithm by reducing the data that is processed at each loop. They
define a border area made of the points close enough to the
edge of their cluster so that the next iteration could make them
switch clusters. It is thus possible to limit the data space visited
at each loop to this area, which greatly reduces the number of
computations. Experiments with randomly generated datasets
show a reduction of the running time from 50% to 70%.

[4] proposes a heuristic for the initial placement of the
centroids. The first seed is initialized as a random point
of the dataset. The next ones are chosen with probability
that promotes points that are far away from seeds that are
already chosen. Just after the initialization phase, there are
already some probabilistic guaranties about the quality of the
clustering, and those can only be improved with the k-means
algorithm. In practice, this simple initialization improves sig-
nificantly both the running time, with a speed-up from 2 to 10,
and the quality of the solution, with at least a 10% accuracy
improvement, both for random and real data-sets.

2) Parallel KMeans: [12] proposes a parallel k-means al-
gorithm using MapReduce, a powerful parallel programmming
technique. Hadoop was used as the MapReduce system for the
experiments. Results show the algorithm has a great scalabil-
ity: a speedup around 3 is obtained when using 4 nodes. The
algorithm can thus process efficiently large datasets.

The authors of [13] propose MKmeans, a parallel clustering
algorithm using MPI (Message Passing Interface). MPI is an
API library which provides a standard programming model for
message passing bewteen a set of processes. The algorithm is
implemented using data parallelism: the points are split into n
sets. Each of the n processes execute the sequential k-means
algorithm on its dataset. A final merging function is used to
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Fig. 1. Illustration of UPMEM architecture

generate k centroids from the k * n centroids outputted by the
n processes. An experimental evaluation is performed using
datasets from the UCI Machine Learning Dataset Repository.
Results show MKmeans improves the time performance of the
clustering algorithm with large-scale datasets.

IIT. UPMEM ARCHITECTURE OVERVIEW

UPMEM technology relies on the concept of processing in
memory (PIM). Co-processing units called DPUs (standing
for DRAM Processing Unit), are integrated into the main
memory. They can execute operations directly into the DIMM,
minimizing the data movement. This concept permits massive
parallelization through the DPUs while the bandwidth is
increased and the latency is reduced, compared to a standard
parallel architecture. This makes this technology particularly
efficient for data-intensive operations.

A. Architecture

DPUs are programmable co-processor optimized for data
computing, designed to run small programs or routines on
behalf of the CPU. They can be run simultaneously and are
independent in term of code and data. Each of them is attached
to a distinct bank of the memory with independent access so
the bandwidth is improved since no bus is shared.

The DPUs are based on a RISC architecture with 24 32-
bit registers per thread. The software implementation of an
execution thread is called a tasklet and is based on hardware
threads.

The DPUs have no data and instruction cache but two
fast memories: the instruction RAM called WRAM and a
scratchpad memory called MRAM, shared by all the tasklets.
The global architecture is shown in Fig. 1. The MRAM must
be explicitly managed by the programmer who can reserve
areas for shared memories or for exclusive tasklet usage (heap
allocation).

The architecture is designed to sit in the DRAM technology,
which introduces several constraints. The power of the DPUs
is limited compared to a standard processor: the frequency is
around 750 MHz and operations they can perform are limited.

For example they cannot perform floating point operations and
the multiplication is expansive with an overhead of 30 cycles.

The strength of the technology lies in the data access. The
DPUs support multi-threading up to 24 threads, in a way that
the context is switched at every clock cycle. A thread executing
a direct memory access is suspended until the transfer is
complete, insuring minimum latency.

One DPU is attached to every 64 MBytes of memory.
Hence, a 16 GBytes DIMM embeds 256 independent DPUs,
and several of them can be added to a standard CPU. This
makes a total of 4096 cores together that can support up to 24
threads, with 256 GBytes of memory. However, this massively
parallel environment require an adaptation of the software.

B. Programming applications on UPMEM

On the programming level, two programs must be specified.

The host processor acts as a coordinator: it allocates the
DPUs, loads the program into the DPUs, prepares the data,
boots the DPUs and gathers the results.

The data-intensive part of the code is offloaded to the
DPUs as tasklets. Several tasklets can run simultaneously on a
DPU and synchronization primitives, as well as share memory
mechanisms, are available to orchestrate the execution.

It can be seen as a distributed system at the server level.
Note that the tasklet execution can be run asynchronously with
the host program, allowing host tasks to be overlapped with
DPUs tasks.

C. Communication between CPU and DPUs

The CPU has two mechanisms to communicate with the
DPUs: through the MRAM or through a mailbox system.

Communication through the MRAM is similar to a standard
communication between the CPU and the memory. The CPU
stores some data into the MRAM, the DPU computes the data,
store the result into the MRAM and the CPU loads the result.
This mechanism is rather slows but allows the communication
of large amounts of data.

The mailbox mechanism is faster but the amount of shared
data does not exceed a few bytes, which makes it ideal for
synchronization. The mailbox is located in the WRAM and
can be accessed quickly by the DPU. Both the CPU and the
DPU can perform post or receive operations on the mailbox
and exchange data.

The DPUs cannot communicate directly but only through
the host processor, which makes this operation vulnerable to
bandwidth issues.

To sum up, UPMEM technology offers a massively parallel
environment with increased bandwidth and minimum latency
for data-intensive applications. The application has to be
adjusted to consider the distributed architecture format. The
main program supervises the data transfers and the tasklets
execution while the DPUs handle the data-intensive part of
the code.



IV. k-MEANS IMPLEMENTATION FOR THE UPMEM
ARCHITECTURE

In this section, we explain how we made a distributed k-
means. IV-A presents our algorithm of k-means using UPMEM
architecture. We then give details about our implementation
in IV-B.

A. Highly Parallelized k-means Algorithm

The main idea is to distribute the data across the DPU
memories in order to offload the computation of the distances.
The host processor communicates the centroids to the DPUs,
gathers and merges the results. The main advantage is that the
distances computations are delegated to the DPUs to be run
in parallel near the data.

The following steps are performed:

1) The points are uniformly distributed between the DPUs.

2) The host processor chooses the initial centroids.

3) The host processor communicates the centroids to the
DPUs.

4) The DPUs assign each point to the nearest centroid.

5) The DPUs start computing the new centroids with their
partial information.

6) The host processor merges the partial results and com-
putes the new centroids.

7) Repeat from 3 until the convergence criteria is met.

8) Return the clusters.

Those steps are illustrated in Fig. 2.

B. Implementation Details

We expose now the details of the two aspects of the
implementation: the host program, and the DPUs tasklet.

1) Host program: First, the dataset is processed to get the
data and its characteristics (number of points and dimensions).
Then we request the DPUs, and we initialize them by sending
the tasklet program and general information (the value of k,
or the number of threads requested by the user, ...). Next,
the points are dispatched uniformly over the DPUs. The host
enters the while loop and starts by sending the current
centroids to all DPUs. It boots the DPUs and wait for them to
have all completed their task. Then, the host retrieves partial
centroids computed by the DPUs and performs a reduce task
to get the new centroids for the next iteration. It also checks
if the convergence criteria is met, by comparing the old and
the new centroids. If this is not the case, this loop is repeated
until convergence. Otherwise, the hosts writes the results in a
logging file and terminates.

2) DPU tasklet: This program is run by every thread of
each DPU. The MRAM stores the followings:

« global variables (e.g. the number of points),

¢ centroids,

 points, and

e new centroids.
First the thread retrieves the general informations, its ID, and
the current centroids, and stores it into the WRAM. Then
it loops over every point it is in charge of. It transfers the
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Fig. 2. k-means on UPMEM. The points are uniformly distributed across the
DPUs. Computations consist in calculating the nearest cluster for each point.

point from the MRAM to the WRAM. It performs some com-
putation to determine the closest centroid and does a partial
centroid update, by adding the contribution of the current point
to the right centroid. Once this step is done for every point, the
thread adds up its partial centroids computation to the global
one in MRAM. We use a critical section as this memory access
is shared between all threads.

3) Limits: This implementation could still be improved in
many ways. A part of the data used in the tasklet is identical
between threads. Therefore, shared memory could be added to
store those data and avoid redundant computation.

Also, since the multiplication is rather expensive in this
architecture, it could be interesting to use another distance
without any multiplication during the first steps to approach
the result, and only use euclidean distance for the final
convergence.

V. EXPERIMENTAL EVALUATION
We now give details about our experimental setup in V-A,
and present our results in V-B.

A. Experimental Set Up

As the architecture is not yet available, we use a cycle-
accurate simulator that we run on a virtual machine to conduct
the experiments.



Name Number of points | Dimension | Value used for k
RANDOM-0 500000 34 3
RANDOM-1 1000000 10 5
RANDOM-2 100000 2 10

TABLE T

CHARACTERISTICS OF RANDOM DATASETS

Firstly, we will give some details about the datasets used to
perform the experiments. Secondly, we will give an overview
of some existing implementations of the k-means algorithm
that we can use as a comparison. Finally, we will give the
specifications of the virtual machine we used to conduct the
experiments.

1) Datasets: We consider a set of n points with d coordi-
nates. A dataset is thus a subset of R"™*<.

As the UPMEM hardware only accepts integer operations,
we only consider datasets with integer coordinates. Exper-
iments with floats could however be performed as further
work, using a software library to emulate floating operations.
We consider datasets with different characteristics in terms
of number of points and dimension value. Experiments are
performed with randomly generated datasets.

We generate random datasets using the following protocol:

1) We first compute k& random points uniformly in an
hypercube of edge of size 1024, these points will be
used as centroid for clusters.

2) We add a point to the dataset by first choosing randomly
one of the clusters, and then generating the point around
it with a Gaussian distribution.

3) We thus obtain some float coordinates that we convert
to integers.

This way, we obtain a dataset for which the result of the k-
means algorithm is meaningful.

We chose different characteristics and seeds to select three
random datasets, to use during evaluation. These are described
in TABLE L.

2) Reference implementations: We aim to compare our
program with some existing k-means implementations. Thus
we give an overview of those we selected to perform this
evaluation.

[14] gives a sequential k-means program written in C,
as well as a parallel program using MPI. Message Passing
Interface (MPI) is a standard library that allows to exchange
messages between processes or nodes, and that is widely used
for parallel computing.

[15] uses the Hadoop framework, which is an open source
implementation of MapReduce, a powerful parallel program-
ming technique. [16] provides a benchmark for k-means.

Finally, [17] gives a GPU implementation that uses the Cuda
platform.

3) Virtual Machine specifications: The experiments are
conducted on a virtual machine (QEMU Virtual CPU version
(cpu64-rhel6), 4 cores 2.4 MHz, 4 GBytes RAM) config-
uration running Linux Fedora 20. Both the sequential and
the simulator experiments are conducted on this architecture.
Note that the simulator is taking some extra space into the

main memory, thus we need to check that this doesn’t affect
the overall computation time. Firstly, we ensured that this
does not induces extra swap accesses. Secondly, the time-
consuming part is the tasklet computation which runs on the
simulator thus it cannot be affected, and a little increase of the
host computation time would not be significant in the overall
computation time.

B. Experimental Results

1) Impact of multi-threading: In order to see the impact of
the DPU threads, we run experiments with different number of
threads, using the three random datasets previously presented.
The runtime is obtained as follows: we measure the number
of cycles taken for each DPU and iteration. We keep the value
of the longest DPU, and we sum over the iterations. Finally,
we compute the final runtime as we know DPU frequency is
750 MHz.

Results are given in Fig. 3. We can see the impact of the
thread pipeline to ensure minimum latency while accessing
memory. The runtime decreases as the number of threads
increases, until reaching a plateau starting at around 8 threads.
Therefore, we set the number of threads to 10 for all remaining
experiments.

2) Impact of the number of DPUs: We now fix a dataset,
we chose RANDOM-0, and measure runtime with different
numbers of available DPUs. Results are given in Fig. 4.

As we can see, the dependence is inversely proportional:
if we multiply by two the number of DPUs, the runtime is
divided by two. This result is consistent since the computation
time per point is independent from the number of points the
DPU has to process.

3) Comparison with Reference Implementation: We com-
pare our implementation with the C sequential program pre-
sented in V-A2. We refer to it as SeqC, and to our implementa-
tion as X-DPUs, meaning the experiment was conducted using
X DPUs. We consider random datasets previously presented.
Runtime results are summarized in TABLE II. Because of the
previous results, we can compute the number of DPUs required
to be faster than the sequential version.

As we can see, having a low number of dimensions and
centroids is the best case. This can be explained because
a larger number of dimensions requires a larger amount of
multiplications per point for the distance computation. A
similar problem occurs with a larger number of centroids
that requires a larger amount of computation per memory
transfer [18].

VI. CONCLUSION

We first presented the concept of Processing-in-Memory
and the data-intensive k-means algorithm which we chose to
evaluate the UPMEM PIM architecture with. After introducing
the architecture we explained how we implemented the k-
means algorithm. We then evaluated our program and exposed
some limitations due to the low computation power of the
architecture. When some parameters for the k-means increase,
computation becomes the bottleneck and thus the program
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becomes unsuitable for this architecture. In the end it is useful
to find which level of memory bound makes a program running
faster on UPMEM, because we already know that it works well
with genomic text processing [19], [20].

We still need to compare with other parallel implementa-
tions to see if we have similar limitations or advantages. We
also could conduct experiments with real datasets, for example
from the UCI Machine Learning Repository [21] or Hadoop
benchmarks [16] by adapting floating points to integers.

We could also go further on the hardware side. Having the
actual physical device would allow us to evaluate it at large
scale and study the impact of communications. Also, in a
future version it might be possible that a hardware multiplier is
implemented. As we have seen by profiling our program, 40%
of the executed instructions are multiplication steps. Given

that a multiplication takes about 30 cycles it would be a
significant improvement and would remove the slow-down
when the dimension is increased.

On the algorithmic side, a simple tweak would be to keep
computed distances in DPU [10]. It would be interesting to
study the trade-off between space and time. Another additions,
harder to implement, is to keep only a border of points that can
switch clusters [11]. This time, it is the possible involvement
of the CPU in the computation that would be interesting to
evaluate.
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